Mostrar el registro sencillo del ítem

dc.contributor.author
Andreatta, Massimo  
dc.contributor.author
Nielsen, Morten  
dc.date.available
2022-04-12T19:49:56Z  
dc.date.issued
2016-02-15  
dc.identifier.citation
Andreatta, Massimo; Nielsen, Morten; Gapped sequence alignment using artificial neural networks: Application to the MHC class I system; Oxford University Press; Bioinformatics (Oxford, England); 32; 4; 15-2-2016; 511-517  
dc.identifier.issn
1367-4803  
dc.identifier.uri
http://hdl.handle.net/11336/155124  
dc.description.abstract
Motivation: Many biological processes are guided by receptor interactions with linear ligands of variable length. One such receptor is the MHC class I molecule. The length preferences vary depending on the MHC allele, but are generally limited to peptides of length 8–11 amino acids. On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods trained on peptides of single lengths. Also, we illustrate how the location of deletions can aid the interpretation of the modes of binding of the peptide-MHC, as in the case of long peptides bulging out of the MHC groove or protruding at either terminus. Finally, we demonstrate that the method can learn the length profile of different MHC molecules, and quantified the reduction of the experimental effort required to identify potential epitopes using our prediction algorithm. Availability and implementation: The NetMHC-4.0 method for the prediction of peptide-MHC class I binding affinity using gapped sequence alignment is publicly available at: http://www.cbs.dtu.dk/ services/NetMHC-4.0.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SEQUENCE ALIGNMENT  
dc.subject
MHC I  
dc.subject
INSERTIONS  
dc.subject
DELETIONS  
dc.subject
PEPTIDE-MHC  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Biología Celular, Microbiología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Gapped sequence alignment using artificial neural networks: Application to the MHC class I system  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-04-23T19:05:42Z  
dc.identifier.eissn
1460-2059  
dc.journal.volume
32  
dc.journal.number
4  
dc.journal.pagination
511-517  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.description.fil
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.journal.title
Bioinformatics (Oxford, England)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/bioinformatics/btv639  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/32/4/511/1744469