Mostrar el registro sencillo del ítem

dc.contributor.author
Fernandez Bonder, Julian  
dc.contributor.author
Orive, Rafael  
dc.contributor.author
Rossi, Julio Daniel  
dc.date.available
2022-04-11T11:06:28Z  
dc.date.issued
2009-09  
dc.identifier.citation
Fernandez Bonder, Julian; Orive, Rafael; Rossi, Julio Daniel; The best Sobolev trace constant in periodic media for critical and subcritical exponents; Cambridge University Press; Glasgow Mathematical Journal; 51; 3; 9-2009; 619-630  
dc.identifier.issn
0017-0895  
dc.identifier.uri
http://hdl.handle.net/11336/154860  
dc.description.abstract
In this paper we study homogenisation problems for Sobolev trace embedding H1(Ω) ↪ Lq(∂Ω) in a bounded smooth domain. When q = 2 this leads to a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace embedding in rapidly oscillating periodic media, and we consider H1 and Lq spaces with weights that are periodic in space. We find that extremals for these embeddings converge to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant. Our results are in fact more general; we can also consider general operators of the form aɛ(x, ∇u) with non-linear Neumann boundary conditions. In particular, we can deal with the embedding W1,p(Ω) ↪ Lq(∂Ω).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cambridge University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HOMOGENIZATION  
dc.subject
NONLINEAR BOUNDARY CONDITIONS  
dc.subject
SOBOLEV TRACE EMBEDDING  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The best Sobolev trace constant in periodic media for critical and subcritical exponents  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-03T20:51:24Z  
dc.journal.volume
51  
dc.journal.number
3  
dc.journal.pagination
619-630  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Orive, Rafael. Universidad Autónoma de Madrid; España  
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Glasgow Mathematical Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1017/S0017089509990048