Mostrar el registro sencillo del ítem
dc.contributor.author
Fernandez Bonder, Julian
dc.contributor.author
Orive, Rafael
dc.contributor.author
Rossi, Julio Daniel
dc.date.available
2022-04-11T11:06:28Z
dc.date.issued
2009-09
dc.identifier.citation
Fernandez Bonder, Julian; Orive, Rafael; Rossi, Julio Daniel; The best Sobolev trace constant in periodic media for critical and subcritical exponents; Cambridge University Press; Glasgow Mathematical Journal; 51; 3; 9-2009; 619-630
dc.identifier.issn
0017-0895
dc.identifier.uri
http://hdl.handle.net/11336/154860
dc.description.abstract
In this paper we study homogenisation problems for Sobolev trace embedding H1(Ω) ↪ Lq(∂Ω) in a bounded smooth domain. When q = 2 this leads to a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace embedding in rapidly oscillating periodic media, and we consider H1 and Lq spaces with weights that are periodic in space. We find that extremals for these embeddings converge to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant. Our results are in fact more general; we can also consider general operators of the form aɛ(x, ∇u) with non-linear Neumann boundary conditions. In particular, we can deal with the embedding W1,p(Ω) ↪ Lq(∂Ω).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cambridge University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
HOMOGENIZATION
dc.subject
NONLINEAR BOUNDARY CONDITIONS
dc.subject
SOBOLEV TRACE EMBEDDING
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The best Sobolev trace constant in periodic media for critical and subcritical exponents
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-03T20:51:24Z
dc.journal.volume
51
dc.journal.number
3
dc.journal.pagination
619-630
dc.journal.pais
Reino Unido
dc.journal.ciudad
Cambridge
dc.description.fil
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Orive, Rafael. Universidad Autónoma de Madrid; España
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Glasgow Mathematical Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1017/S0017089509990048
Archivos asociados