Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods

Salto, CarolinaIcon ; Alba, Enrique
Fecha de publicación: 25/07/2019
Editorial: Taylor & Francis
Revista: Applied Artificial Intelligence
ISSN: 0883-9514
e-ISSN: 1087-6545
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In this paper, we analyze the neighborhood effect in the selection of parents on an evolutionary algorithm. In this line, we compare a cellular genetic algorithm (cGA), which intrinsically uses the neighbor notion in the mating process, with a modified genetic algorithm including the concept of neighborhood in the selection of parents. Additionally, we analyze the neighborhood size considered for the selection of parent, trying to discover if a quasi-optimal size exists. All the analysis is carried out from a traditional analytic sense to a theoretical point of view regarding evolvability measures. The experimental results suggest that the neighbor effect is important in the performance of an evolutionary algorithm and could provide the cGA with higher chances of success in well-known optimization problems. Regarding the neighborhood size, there is an evidence that a range of neighbors of six, plus/minus two, individuals leads to the cGA to perform more efficiently than other considered sizes.
Palabras clave: CELLULAR GENETIC ALGORITHMS , NEIGHBORHOOD SIZE , PROBLEM OPTIMIZATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 907.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/154756
URL: https://www.tandfonline.com/doi/full/10.1080/08839514.2019.1646005
DOI: http://dx.doi.org/10.1080/08839514.2019.1646005
Colecciones
Articulos(CCT - PATAGONIA CONFLUENCIA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA CONFLUENCIA
Citación
Salto, Carolina; Alba, Enrique; Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods; Taylor & Francis; Applied Artificial Intelligence; 33; 10; 25-7-2019; 863-880
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES