Mostrar el registro sencillo del ítem
dc.contributor.author
Ribeiro, Tiago L.
dc.contributor.author
Chialvo, Dante Renato
dc.contributor.author
Plenz, Dietmar
dc.date.available
2022-04-06T18:22:02Z
dc.date.issued
2021-01-20
dc.identifier.citation
Ribeiro, Tiago L.; Chialvo, Dante Renato; Plenz, Dietmar; Scale-Free Dynamics in Animal Groups and Brain Networks; Frontiers Media; Frontiers in Systems Neuroscience; 14; 591210; 20-1-2021; 1-10
dc.identifier.issn
1662-5137
dc.identifier.uri
http://hdl.handle.net/11336/154521
dc.description.abstract
Collective phenomena fascinate by the emergence of order in systems composed of a myriad of small entities. They are ubiquitous in nature and can be found over a vast range of scales in physical and biological systems. Their key feature is the seemingly effortless emergence of adaptive collective behavior that cannot be trivially explained by the properties of the system´s individual components. This perspective focuses on recent insights into the similarities of correlations for two apparently disparate phenomena: flocking in animal groups and neuronal ensemble activity in the brain. We first will summarize findings on the spontaneous organization in bird flocks and macro-scale human brain activity utilizing correlation functions and insights from critical dynamics. We then will discuss recent experimental findings that apply these approaches to the collective response of neurons to visual and motor processing, i.e., to local perturbations of neuronal networks at the meso- and microscale. We show how scale-free correlation functions capture the collective organization of neuronal avalanches in evoked neuronal populations in nonhuman primates and between neurons during visual processing in rodents. These experimental findings suggest that the coherent collective neural activity observed at scales much larger than the length of the direct neuronal interactions is demonstrative of a phase transition and we discuss the experimental support for either discontinuous or continuous phase transitions. We conclude that at or near a phase-transition neuronal information can propagate in the brain with similar efficiency as proposed to occur in the collective adaptive response observed in some animal groups.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Frontiers Media
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRAIN DYNAMICS
dc.subject
CORRELATIONS
dc.subject
CRITICALITY
dc.subject
FLOCKING
dc.subject
MUTUAL INFORMATION
dc.subject
NEURONAL NETWORK
dc.subject
SCALE-FREE
dc.subject
SYNCHRONIZATION
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Scale-Free Dynamics in Animal Groups and Brain Networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-04-05T14:44:25Z
dc.journal.volume
14
dc.journal.number
591210
dc.journal.pagination
1-10
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Ribeiro, Tiago L.. National Institute Of Mental Health; Estados Unidos
dc.description.fil
Fil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina. Center for Complex Systems & Brain Sciences; Argentina
dc.description.fil
Fil: Plenz, Dietmar. National Institute Of Mental Health; Estados Unidos
dc.journal.title
Frontiers in Systems Neuroscience
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fnsys.2020.591210
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnsys.2020.591210/full
Archivos asociados