Mostrar el registro sencillo del ítem

dc.contributor.author
Ribeiro, Tiago L.  
dc.contributor.author
Chialvo, Dante Renato  
dc.contributor.author
Plenz, Dietmar  
dc.date.available
2022-04-06T18:22:02Z  
dc.date.issued
2021-01-20  
dc.identifier.citation
Ribeiro, Tiago L.; Chialvo, Dante Renato; Plenz, Dietmar; Scale-Free Dynamics in Animal Groups and Brain Networks; Frontiers Media; Frontiers in Systems Neuroscience; 14; 591210; 20-1-2021; 1-10  
dc.identifier.issn
1662-5137  
dc.identifier.uri
http://hdl.handle.net/11336/154521  
dc.description.abstract
Collective phenomena fascinate by the emergence of order in systems composed of a myriad of small entities. They are ubiquitous in nature and can be found over a vast range of scales in physical and biological systems. Their key feature is the seemingly effortless emergence of adaptive collective behavior that cannot be trivially explained by the properties of the system´s individual components. This perspective focuses on recent insights into the similarities of correlations for two apparently disparate phenomena: flocking in animal groups and neuronal ensemble activity in the brain. We first will summarize findings on the spontaneous organization in bird flocks and macro-scale human brain activity utilizing correlation functions and insights from critical dynamics. We then will discuss recent experimental findings that apply these approaches to the collective response of neurons to visual and motor processing, i.e., to local perturbations of neuronal networks at the meso- and microscale. We show how scale-free correlation functions capture the collective organization of neuronal avalanches in evoked neuronal populations in nonhuman primates and between neurons during visual processing in rodents. These experimental findings suggest that the coherent collective neural activity observed at scales much larger than the length of the direct neuronal interactions is demonstrative of a phase transition and we discuss the experimental support for either discontinuous or continuous phase transitions. We conclude that at or near a phase-transition neuronal information can propagate in the brain with similar efficiency as proposed to occur in the collective adaptive response observed in some animal groups.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers Media  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BRAIN DYNAMICS  
dc.subject
CORRELATIONS  
dc.subject
CRITICALITY  
dc.subject
FLOCKING  
dc.subject
MUTUAL INFORMATION  
dc.subject
NEURONAL NETWORK  
dc.subject
SCALE-FREE  
dc.subject
SYNCHRONIZATION  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Scale-Free Dynamics in Animal Groups and Brain Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-05T14:44:25Z  
dc.journal.volume
14  
dc.journal.number
591210  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Ribeiro, Tiago L.. National Institute Of Mental Health; Estados Unidos  
dc.description.fil
Fil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina. Center for Complex Systems & Brain Sciences; Argentina  
dc.description.fil
Fil: Plenz, Dietmar. National Institute Of Mental Health; Estados Unidos  
dc.journal.title
Frontiers in Systems Neuroscience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fnsys.2020.591210  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnsys.2020.591210/full