Artículo
Learning latent jet structure
Fecha de publicación:
29/06/2021
Editorial:
Multidisciplinary Digital Publishing Institute
Revista:
Symmetry
e-ISSN:
2073-8994
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted tt jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way.
Palabras clave:
BAYESIAN SEMI-SUPERVISED LEARNING
,
JET SUBSTRUCTURE ANALYSIS
,
QCD
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIFI)
Articulos de INSTITUTO DE CIENCIAS FISICAS
Articulos de INSTITUTO DE CIENCIAS FISICAS
Citación
Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Szewc, Manuel; Learning latent jet structure; Multidisciplinary Digital Publishing Institute; Symmetry; 13; 7; 29-6-2021; 1-11
Compartir
Altmétricas