Artículo
Geometric inequivalence of metric and Palatini formulations of General Relativity
Bejarano, Cecilia Soledad
; Delhom, Adria; Jiménez Cano, Alejandro; Olmo, Gonzalo J.; Rubiera Garcia, Diego
Fecha de publicación:
03/2020
Editorial:
Elsevier Science
Revista:
Physics Letters B
ISSN:
0370-2693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.
Palabras clave:
Geometric inequivalence
,
General Relativity
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Bejarano, Cecilia Soledad; Delhom, Adria; Jiménez Cano, Alejandro; Olmo, Gonzalo J.; Rubiera Garcia, Diego; Geometric inequivalence of metric and Palatini formulations of General Relativity; Elsevier Science; Physics Letters B; 802; 135275; 3-2020; 1-4
Compartir
Altmétricas