Mostrar el registro sencillo del ítem

dc.contributor.author
Aguilera, Maria Camila  
dc.contributor.author
Roitberg, Adrián  
dc.contributor.author
Kleiman, Valeria D.  
dc.contributor.author
Fernández Alberti, Sebastián  
dc.contributor.author
Galindo Cruz, Johan Fabian  
dc.date.available
2022-04-05T14:36:03Z  
dc.date.issued
2020-10-15  
dc.identifier.citation
Aguilera, Maria Camila; Roitberg, Adrián; Kleiman, Valeria D.; Fernández Alberti, Sebastián; Galindo Cruz, Johan Fabian; Unraveling Direct and Indirect Energy Transfer Pathways in a Light-Harvesting Dendrimer; American Chemical Society; Journal of Physical Chemistry C; 124; 41; 15-10-2020; 22383-22391  
dc.identifier.issn
1932-7447  
dc.identifier.uri
http://hdl.handle.net/11336/154375  
dc.description.abstract
Light-harvesting and intramolecular energy funneling are fundamental processes in natural photosynthesis. A comprehensive knowledge of the main structural, dynamic, and optical properties that regulate the efficiency of such processes can be deciphered through the study of artificial light-harvesting antennas, capable of mimicking natural systems. Dendrimers are some of the most explored artificial light-harvesting molecules. However, they have to be well-defined and highly branched conjugated structures, creating intramolecular energy gradients that guarantee efficient and unidirectional energy transfer. Herein, we explore the contributions of the different mechanisms responsible for the highly efficient energy funneling in a large, complex poly(phenylene-ethynylene) dendrimer, whose architecture was particularly designed to conduct the initially absorbed photons toward a spatially localized energy sink away from its surface, avoiding its quenching by the environment. For this purpose, the nonradiative photoinduced energy relaxation and redistribution are simulated by using nonadiabatic excited state molecular dynamics. In this way, the two possible direct and indirect pathways for exciton migrations, previously reported by time-resolved spectroscopy, are defined. Our results stimulate future developments of new synthetic dendrimers for applications in molecular-based photonic devices in which an enhancement in the photoemission efficiency can be predicted by changes in the detailed balance between the different intramolecular energy transfer pathways.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
NONADIABATIC EXCITED-STATE MOLECULAR DYNAMICS  
dc.subject
LIGHT HARVESTING  
dc.subject
DENDRIMER  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unraveling Direct and Indirect Energy Transfer Pathways in a Light-Harvesting Dendrimer  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-03-14T21:04:55Z  
dc.journal.volume
124  
dc.journal.number
41  
dc.journal.pagination
22383-22391  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Aguilera, Maria Camila. Universidad Nacional de Colombia; Colombia  
dc.description.fil
Fil: Roitberg, Adrián. University of Florida; Estados Unidos  
dc.description.fil
Fil: Kleiman, Valeria D.. University of Florida; Estados Unidos  
dc.description.fil
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Galindo Cruz, Johan Fabian. Universidad Nacional de Colombia; Colombia  
dc.journal.title
Journal of Physical Chemistry C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.0c06539  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.0c06539