Mostrar el registro sencillo del ítem
dc.contributor.author
Aguilera, Maria Camila
dc.contributor.author
Roitberg, Adrián
dc.contributor.author
Kleiman, Valeria D.
dc.contributor.author
Fernández Alberti, Sebastián
dc.contributor.author
Galindo Cruz, Johan Fabian
dc.date.available
2022-04-05T14:36:03Z
dc.date.issued
2020-10-15
dc.identifier.citation
Aguilera, Maria Camila; Roitberg, Adrián; Kleiman, Valeria D.; Fernández Alberti, Sebastián; Galindo Cruz, Johan Fabian; Unraveling Direct and Indirect Energy Transfer Pathways in a Light-Harvesting Dendrimer; American Chemical Society; Journal of Physical Chemistry C; 124; 41; 15-10-2020; 22383-22391
dc.identifier.issn
1932-7447
dc.identifier.uri
http://hdl.handle.net/11336/154375
dc.description.abstract
Light-harvesting and intramolecular energy funneling are fundamental processes in natural photosynthesis. A comprehensive knowledge of the main structural, dynamic, and optical properties that regulate the efficiency of such processes can be deciphered through the study of artificial light-harvesting antennas, capable of mimicking natural systems. Dendrimers are some of the most explored artificial light-harvesting molecules. However, they have to be well-defined and highly branched conjugated structures, creating intramolecular energy gradients that guarantee efficient and unidirectional energy transfer. Herein, we explore the contributions of the different mechanisms responsible for the highly efficient energy funneling in a large, complex poly(phenylene-ethynylene) dendrimer, whose architecture was particularly designed to conduct the initially absorbed photons toward a spatially localized energy sink away from its surface, avoiding its quenching by the environment. For this purpose, the nonradiative photoinduced energy relaxation and redistribution are simulated by using nonadiabatic excited state molecular dynamics. In this way, the two possible direct and indirect pathways for exciton migrations, previously reported by time-resolved spectroscopy, are defined. Our results stimulate future developments of new synthetic dendrimers for applications in molecular-based photonic devices in which an enhancement in the photoemission efficiency can be predicted by changes in the detailed balance between the different intramolecular energy transfer pathways.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
NONADIABATIC EXCITED-STATE MOLECULAR DYNAMICS
dc.subject
LIGHT HARVESTING
dc.subject
DENDRIMER
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Unraveling Direct and Indirect Energy Transfer Pathways in a Light-Harvesting Dendrimer
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-03-14T21:04:55Z
dc.journal.volume
124
dc.journal.number
41
dc.journal.pagination
22383-22391
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Aguilera, Maria Camila. Universidad Nacional de Colombia; Colombia
dc.description.fil
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
dc.description.fil
Fil: Kleiman, Valeria D.. University of Florida; Estados Unidos
dc.description.fil
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Galindo Cruz, Johan Fabian. Universidad Nacional de Colombia; Colombia
dc.journal.title
Journal of Physical Chemistry C
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.0c06539
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.0c06539
Archivos asociados