Mostrar el registro sencillo del ítem
dc.contributor.author
Briozzo, Adriana Clotilde
dc.contributor.author
Natale, María Fernanda
dc.date.available
2022-03-29T02:26:32Z
dc.date.issued
2020-04
dc.identifier.citation
Briozzo, Adriana Clotilde; Natale, María Fernanda; On a two‐phase Stefan problem with convective boundary condition including a density jump at the free boundary; John Wiley & Sons Ltd; Mathematical Methods In The Applied Sciences; 43; 6; 4-2020; 3744-3753
dc.identifier.issn
0170-4214
dc.identifier.uri
http://hdl.handle.net/11336/153982
dc.description.abstract
We consider a two-phase Stefan problem for a semi-infinite body x > 0, with a convective boundary condition including a density jump at the free boundary with a time-dependent heat transfer coefficient of the type h∕ √t, h > 0 whose solution was given in D. A. Tarzia, PAMM. Proc. Appl. Math. Mech. 7, 1040307–1040308 (2007). We demonstrate that the solution to this problem converges to the solution to the analogous one with a temperature boundary condition when the heat transfer coefficient h → +∞. Moreover, we analyze the dependence of the free boundary respecting to the jump density.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Two-phase Stefan problem
dc.subject
Density jump
dc.subject
Asymptotic behaviour
dc.subject
Phase change process
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On a two‐phase Stefan problem with convective boundary condition including a density jump at the free boundary
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-03-16T12:38:31Z
dc.identifier.eissn
1099-1476
dc.journal.volume
43
dc.journal.number
6
dc.journal.pagination
3744-3753
dc.journal.pais
Alemania
dc.description.fil
Fil: Briozzo, Adriana Clotilde. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Natale, María Fernanda. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
dc.journal.title
Mathematical Methods In The Applied Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.6152
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mma.6152
Archivos asociados