Mostrar el registro sencillo del ítem
dc.contributor.author
Ramunni, Viviana Patricia
dc.contributor.author
Pascuet, Maria Ines Magdalena
dc.contributor.author
Castin, Nicolas
dc.contributor.author
Rivas, Alejandro Mariano Fidel
dc.date.available
2022-03-22T02:47:12Z
dc.date.issued
2021-02-15
dc.identifier.citation
Ramunni, Viviana Patricia; Pascuet, Maria Ines Magdalena; Castin, Nicolas; Rivas, Alejandro Mariano Fidel; The influence of grain size on the hydrogen diffusion in bcc Fe; Elsevier; Computational Materials Science; 188; 110146; 15-2-2021; 1-11
dc.identifier.issn
0927-0256
dc.identifier.uri
http://hdl.handle.net/11336/153671
dc.description.abstract
This work studies the diffusion of Hydrogen (H) in bcc Fe, containing a high-angle symmetric tilt grain boundary (GB), as a function of both the temperature and the average grain size. For this purpose, we propose a microscopic effective model which includes diffusion in bulk and in the GB. The model distinguishes between diffusion along the GB, in parallel with the bulk, while diffusion through the GB is to be considered in series. The bounding and migration energies of the H interstitial sites are derived through an extensive study of H atoms dissolved in a high-angle symmetric tilt GB. This is undertaken in the framework of a set of classical interatomic potentials, and partially from Density Functional Theory (DFT) calculations, in order to check the consistency of equilibrium atomic structures. We find that preferential trapping sites for H in the GB delay the H migration, thus enhancing its solubility. The derived H diffusion coefficients are in agreement with experimental evidence, however various kinds of GBs are present in real samples. In addition, we see that at high temperature, H diffusion does not depend on the grain size, as similar results than in bulk are found. In contrast, at room temperatures (290 K) and nano-sized grains (100 nm) the effective diffusion can slow down up to two orders of magnitude.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COMPUTER MODELING
dc.subject
FE GRAIN BOUNDARIES
dc.subject
GRAIN SIZE INFLUENCE
dc.subject
HYDROGEN DIFFUSION
dc.subject
HYDROGEN TRAPPING
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
The influence of grain size on the hydrogen diffusion in bcc Fe
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-03-14T21:08:51Z
dc.identifier.eissn
1879-0801
dc.journal.volume
188
dc.journal.number
110146
dc.journal.pagination
1-11
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Ramunni, Viviana Patricia. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza. Gerencia de Materiales y Combustibles Nucleares; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Castin, Nicolas. Centre d'Etude de l'Energie Nucléaire; Bélgica
dc.description.fil
Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones No Nucleares. Gerencia Física (CAC). Departamento de Física de la Materia Condensada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Computational Materials Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025620306376?via%3Dihub
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2020.110146
Archivos asociados