Mostrar el registro sencillo del ítem

dc.contributor.author
Ramunni, Viviana Patricia  
dc.contributor.author
Pascuet, Maria Ines Magdalena  
dc.contributor.author
Castin, Nicolas  
dc.contributor.author
Rivas, Alejandro Mariano Fidel  
dc.date.available
2022-03-22T02:47:12Z  
dc.date.issued
2021-02-15  
dc.identifier.citation
Ramunni, Viviana Patricia; Pascuet, Maria Ines Magdalena; Castin, Nicolas; Rivas, Alejandro Mariano Fidel; The influence of grain size on the hydrogen diffusion in bcc Fe; Elsevier; Computational Materials Science; 188; 110146; 15-2-2021; 1-11  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/153671  
dc.description.abstract
This work studies the diffusion of Hydrogen (H) in bcc Fe, containing a high-angle symmetric tilt grain boundary (GB), as a function of both the temperature and the average grain size. For this purpose, we propose a microscopic effective model which includes diffusion in bulk and in the GB. The model distinguishes between diffusion along the GB, in parallel with the bulk, while diffusion through the GB is to be considered in series. The bounding and migration energies of the H interstitial sites are derived through an extensive study of H atoms dissolved in a high-angle symmetric tilt GB. This is undertaken in the framework of a set of classical interatomic potentials, and partially from Density Functional Theory (DFT) calculations, in order to check the consistency of equilibrium atomic structures. We find that preferential trapping sites for H in the GB delay the H migration, thus enhancing its solubility. The derived H diffusion coefficients are in agreement with experimental evidence, however various kinds of GBs are present in real samples. In addition, we see that at high temperature, H diffusion does not depend on the grain size, as similar results than in bulk are found. In contrast, at room temperatures (290 K) and nano-sized grains (100 nm) the effective diffusion can slow down up to two orders of magnitude.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMPUTER MODELING  
dc.subject
FE GRAIN BOUNDARIES  
dc.subject
GRAIN SIZE INFLUENCE  
dc.subject
HYDROGEN DIFFUSION  
dc.subject
HYDROGEN TRAPPING  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
The influence of grain size on the hydrogen diffusion in bcc Fe  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-03-14T21:08:51Z  
dc.identifier.eissn
1879-0801  
dc.journal.volume
188  
dc.journal.number
110146  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Ramunni, Viviana Patricia. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza. Gerencia de Materiales y Combustibles Nucleares; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Castin, Nicolas. Centre d'Etude de l'Energie Nucléaire; Bélgica  
dc.description.fil
Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones No Nucleares. Gerencia Física (CAC). Departamento de Física de la Materia Condensada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025620306376?via%3Dihub  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2020.110146