Mostrar el registro sencillo del ítem
dc.contributor.author
Alvarez, Bruno
dc.contributor.author
Reynisson, Birkir
dc.contributor.author
Barra, Carolina M
dc.contributor.author
Buus, Søren
dc.contributor.author
Ternette, Nicola
dc.contributor.author
Connelley, Tim
dc.contributor.author
Andreatta, Massimo
dc.contributor.author
Nielsen, Morten
dc.date.available
2022-03-15T22:48:40Z
dc.date.issued
2019-10
dc.identifier.citation
Alvarez, Bruno; Reynisson, Birkir; Barra, Carolina M; Buus, Søren; Ternette, Nicola; et al.; NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions; American Society for Biochemistry and Molecular Biology; Molecular & Cellular Proteomics; 18; 12; 10-2019; 2459-2477
dc.identifier.issn
1535-9476
dc.identifier.uri
http://hdl.handle.net/11336/153404
dc.description.abstract
The set of peptides presented on a cell´s surface by MHC molecules is known as the immunopeptidome. Current mass spectrometry technologies allow for identification of large peptidomes, and studies have proven these data to be a rich source of information for learning the rules of MHC-mediated antigen presentation. Immunopeptidomes are usually poly-specific, containing multiple sequence motifs matching the MHC molecules expressed in the system under investigation. Motif deconvolution -the process of associating each ligand to its presenting MHC molecule(s)- is therefore a critical and challenging step in the analysis of MS-eluted MHC ligand data. Here, we describe NNAlign_MA, a computational method designed to address this challenge and fully benefit from large, poly-specific data sets of MS-eluted ligands. NNAlign_MA simultaneously performs the tasks of i) clustering peptides into individual specificities; ii) automatic annotation of each cluster to an MHC molecule; and iii) training of a prediction model covering all MHCs present in the training set. NNAlign_MA was benchmarked on large and diverse datasets, covering class I and class II data. In all cases, the method was demonstrated to outperform state-of-the-art methods, effectively expanding the coverage of alleles for which accurate predictions can be made, resulting in improved identification of both eluted ligands and T cell epitopes. Given its high flexibility and ease of use, we expect NNAlign_MA to serve as an effective tool to increase our understanding of the rules of MHC antigen presentation and guide the development of novel T cell-based therapeutics.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Society for Biochemistry and Molecular Biology
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MHC
dc.subject
Immunoinformatics
dc.subject
Mass Spectrometry
dc.subject.classification
Otras Ciencias de la Salud
dc.subject.classification
Ciencias de la Salud
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-20T18:07:19Z
dc.journal.volume
18
dc.journal.number
12
dc.journal.pagination
2459-2477
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Bethesda
dc.description.fil
Fil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
dc.description.fil
Fil: Reynisson, Birkir. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Barra, Carolina M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
dc.description.fil
Fil: Buus, Søren. Universidad de Copenhagen; Dinamarca
dc.description.fil
Fil: Ternette, Nicola. University of Oxford; Reino Unido
dc.description.fil
Fil: Connelley, Tim. The Roslin Institute; Reino Unido
dc.description.fil
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
dc.description.fil
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
dc.journal.title
Molecular & Cellular Proteomics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.mcponline.org/lookup/doi/10.1074/mcp.TIR119.001658
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1074/mcp.TIR119.001658
Archivos asociados