Artículo
Cones and Cartan geometry
Fecha de publicación:
10/2021
Editorial:
Elsevier Science
Revista:
Differential Geometry and its Applications
ISSN:
0926-2245
e-ISSN:
1872-6984
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We show that the extended principal bundle of a Cartan geometry of type (A(m,R),GL(m,R)), endowed with its extended connection ωˆ, is isomorphic to the principal A(m,R)-bundle of affine frames endowed with the affine connection as defined in classical Kobayashi-Nomizu volume I. Then we classify the local holonomy groups of the Cartan geometry canonically associated to a Riemannian manifold. It follows that if the holonomy group of the Cartan geometry canonically associated to a Riemannian manifold is compact then the Riemannian manifold is locally a product of cones.
Palabras clave:
CARTAN GEOMETRY
,
AFFINE CONNECTION
,
CONES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Di Scala, Antonio Jose'; Olmos, Carlos Enrique; Vittone, Francisco; Cones and Cartan geometry; Elsevier Science; Differential Geometry and its Applications; 78; 10-2021; 1-14
Compartir
Altmétricas