Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

A Linear Approximation Model for a Non-Linear Flow Shop Scheduling Problem with Learning Effect

Ferraro, Augusto; Rossit, Daniel AlejandroIcon ; Toncovich, Adrián
Tipo del evento: Conferencia
Nombre del evento: International Conference on Applied Mathematics in Engineering
Fecha del evento: 01/09/2021
Institución Organizadora: Istanbul Atlas University;
Título del Libro: International Conference on Applied Mathematics in Engineering: Book of Abstracts
Editorial: Balikesir University
Idioma: Inglés
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

Learning effects have been considered in operations management problems since the early twentieth century [1]. The learning effect has a direct influence on production scheduling problems, since it modifies the use of production machines [2], and for this reason, it has been a problem widely studied by the scheduling community [3]. However, modeling the learning effect in scheduling problems by means of mathematical programming requires the use of non-linear expressions [4], this has limited the majority of works to be focused on single-machine problems [2] [5]. In this work, it is proposed to extend these formulations for the case that the learning effect is exponentially dependent on the previous jobs processed in the sense of [5]. This mathematical model is clearly non-linear, and by having several machines in which the learning process occurs, the probability of getting trapped in poor local optimums is very high. The proposal of this work is a linear approximation scheme, which can be implemented by a standard MIP solver such as CPLEX, in order to obtain very high quality solutions, without requiring sophisticated and tailored methods. The approximation scheme is based on a set of straight lines, which approximate the expected learning effect, generating a convex shell to the problem with expected values, thus avoiding falling into poor quality local optimal points. For creating the convex shell, a least-squares problem must be solved, which is also non-linear, but does not require integer variables, then, it can be solved by simple solvers like the ones provided by spreadsheet software. To evaluate the capability of the solution scheme, the proposed linear model solution was compared with the solution obtained by a proven MINLP solver such as DICOPT [6], in flow shop problems with makespan as the objective function. The results show that the proposed scheme notably improves the solutions obtained by DICOPT, reducing the makespan in up to 12%.
Palabras clave: FLOW SHOP , LEARNING EFFECT , NON-LINEAR MIXED INTEGER PROGRAMMING , LINEAR APPROXIMATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 658.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/153146
URL: http://icame.balikesir.edu.tr/Abstract_Book%20v2-1%2008092021.pdf
Colecciones
Eventos(INMABB)
Eventos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
A Linear Approximation Model for a Non-Linear Flow Shop Scheduling Problem with Learning Effect; International Conference on Applied Mathematics in Engineering; Balikesir; Turquía; 2021; 1-14
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES