Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

PyUPMASK: An improved unsupervised clustering algorithm

Pera, María SolIcon ; Perren, Gabriel IgnacioIcon ; Moitinho, A.; Navone, Hugo DanielIcon ; Vazquez, Ruben AngelIcon
Fecha de publicación: 06/2021
Editorial: EDP Sciences
Revista: Astronomy and Astrophysics
ISSN: 0004-6361
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

Aims. We present pyUPMASK, an unsupervised clustering method for stellar clusters that builds upon the original UPMASK package. The general approach of this method makes it plausible to be applied to analyses that deal with binary classes of any kind as long as the fundamental hypotheses are met. The code is written entirely in Python and is made available through a public repository. Methods. The core of the algorithm follows the method developed in UPMASK but introduces several key enhancements. These enhancements not only make pyUPMASK more general, they also improve its performance considerably. Results. We thoroughly tested the performance of pyUPMASK on 600 synthetic clusters affected by varying degrees of contamination by field stars. To assess the performance, we employed six different statistical metrics that measure the accuracy of probabilistic classification. Conclusions. Our results show that pyUPMASK is better performant than UPMASK for every statistical performance metric, while still managing to be many times faster.
Palabras clave: METHODS: DATA ANALYSIS , METHODS: STATISTICAL , OPEN CLUSTERS AND ASSOCIATIONS: GENERAL , OPEN CLUSTERS AND ASSOCIATIONS: INDIVIDUAL: NGC 2516
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 10.05Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/152761
URL: https://www.aanda.org/articles/aa/abs/2021/06/aa40252-20/aa40252-20.html
DOI: http://dx.doi.org/10.1051/0004-6361/202040252
Colecciones
Articulos(IALP)
Articulos de INST.DE ASTROFISICA LA PLATA
Citación
Pera, María Sol; Perren, Gabriel Ignacio; Moitinho, A.; Navone, Hugo Daniel; Vazquez, Ruben Angel; PyUPMASK: An improved unsupervised clustering algorithm; EDP Sciences; Astronomy and Astrophysics; 650; A109; 6-2021; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES