Mostrar el registro sencillo del ítem
dc.contributor.author
Bom, C. R.
dc.contributor.author
Cortesi, A.
dc.contributor.author
Lucatelli, G.
dc.contributor.author
Dias, L. O.
dc.contributor.author
Schubert, P.
dc.contributor.author
Oliveira Schwarz, G. B.
dc.contributor.author
Cardoso, N. M.
dc.contributor.author
Lima, E. V. R.
dc.contributor.author
Mendes de Oliveira, C.
dc.contributor.author
Sodre, L.
dc.contributor.author
Smith Castelli, Analia Viviana
dc.contributor.author
Ferrari, F.
dc.contributor.author
Damke, G.
dc.contributor.author
Overzier, R.
dc.contributor.author
Kanaan, A.
dc.contributor.author
Ribeiro, T.
dc.contributor.author
Schoenell, W.
dc.date.available
2022-02-24T14:19:05Z
dc.date.issued
2021-10
dc.identifier.citation
Bom, C. R.; Cortesi, A.; Lucatelli, G.; Dias, L. O.; Schubert, P.; et al.; Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 507; 2; 10-2021; 1937-1955
dc.identifier.issn
0035-8711
dc.identifier.uri
http://hdl.handle.net/11336/152658
dc.description.abstract
The morphological diversity of galaxies is a relevant probe of galaxy evolution and cosmological structure formation, but the classification of galaxies in large sky surveys is becoming a significant challenge. We use data from the Stripe-82 area observed by the Southern Photometric Local Universe Survey (S-PLUS) in 12 optical bands, and present a catalogue of the morphologies of galaxies brighter than r = 17 mag determined both using a novel multiband morphometric fitting technique and Convolutional Neural Networks (CNNs) for computer vision. Using the CNNs, we find that, compared to our baseline results with three bands, the performance increases when using 5 broad and 3 narrow bands, but is poorer when using the full 12 band S-PLUS image set. However, the best result is still achieved with just three optical bands when using pre-trained network weights from an ImageNet data set. These results demonstrate the importance of using prior knowledge about neural network weights based on training in unrelated, extensive data sets, when available. Our catalogue contains 3274 galaxies in Stripe-82 that are not present in Galaxy Zoo 1 (GZ1), and we also provide our classifications for 4686 galaxies that were considered ambiguous in GZ1. Finally, we present a prospect of a novel way to take advantage of 12 band information for morphological classification using morphometric features, and we release a model that has been pre-trained on several bands that could be adapted for classifications using data from other surveys. The morphological catalogues are publicly available.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP
dc.subject
LEARNING
dc.subject
S-PLUS
dc.subject
MORPHOLOGY
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-02-04T13:30:24Z
dc.journal.volume
507
dc.journal.number
2
dc.journal.pagination
1937-1955
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Bom, C. R.. Centro Brasileiro de Pesquisa Fisicas; Brasil
dc.description.fil
Fil: Cortesi, A.. Valongo Observatory; Brasil
dc.description.fil
Fil: Lucatelli, G.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil
dc.description.fil
Fil: Dias, L. O.. Centro Brasileiro de Pesquisa Fisicas; Brasil
dc.description.fil
Fil: Schubert, P.. Centro Brasileiro de Pesquisa Fisicas; Brasil
dc.description.fil
Fil: Oliveira Schwarz, G. B.. Universidade Presbiteriana Mackenzie; Brasil
dc.description.fil
Fil: Cardoso, N. M.. Universidade de Sao Paulo; Brasil
dc.description.fil
Fil: Lima, E. V. R.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil
dc.description.fil
Fil: Mendes de Oliveira, C.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil
dc.description.fil
Fil: Sodre, L.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil
dc.description.fil
Fil: Smith Castelli, Analia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
dc.description.fil
Fil: Ferrari, F.. Universidade Federal Do Rio Grande.; Brasil
dc.description.fil
Fil: Damke, G.. Universidad de La Serena; Chile
dc.description.fil
Fil: Overzier, R.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; Brasil
dc.description.fil
Fil: Kanaan, A.. Universidade Federal Da Santa Catarina. Cent.de Cs Físicas E Matemáticas. Departamento de Física; Brasil
dc.description.fil
Fil: Ribeiro, T.. Universidade Federal do Rio Grande do Sul; Brasil
dc.description.fil
Fil: Schoenell, W.. Noao; Estados Unidos
dc.journal.title
Monthly Notices of the Royal Astronomical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/507/2/1937/6328504
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/mnras/stab1981
Archivos asociados