Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting Students' Difficulties from a Piece of Code

Moresi, Marco; Gómez, Marcos JavierIcon ; Benotti, LucianaIcon
Fecha de publicación: 06/2021
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Transactions on Learning Technologies
ISSN: 1939-1382
e-ISSN: 2372-0050
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Based on hundreds of thousands of hours of data about how students learn in massive open online courses, educational machine learning promises to help students who are learning to code. However, in most classrooms, students and assignments do not have enough historical data for feeding these data hungry algorithms. Previous work on predicting dropout is data hungry and, moreover, requires the code to be syntactically correct. As we deal with beginners' code in a text-based language our models are trained on noisy student text; almost 40% of the code in our datasets contains parsing errors. In this article, we compare two machine learning models that predict whether students need help regardless of whether their code compiles or not. That is, we compare two methods for automatically predicting whether students will be able to solve a programming exercise on their own. The first model is a heavily feature-engineered approach that implements pedagogical theories of the relation between student interaction patterns and the probability of dropout; it requires a rich history of student interaction. The second method is based on a short program (that may contain errors) written by a student, together with a few hundred attempts by their classmates on the same exercise. This second method uses natural language processing techniques; it is based on the intuition that beginners' code may be closer to a natural language than to a formal one. It is inspired by previous work on predicting people's fluency when learning a second natural language.
Palabras clave: AND PREDICTION , COMPUTER SCIENCE EDUCATION , INTERACTIVE ENVIRONMENTS , MACHINE LEARNING , MODELING
Ver el registro completo
 
Archivos asociados
Tamaño: 1.367Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/152508
URL: https://ieeexplore.ieee.org/document/9466389
DOI: https://doi.org/10.1109/TLT.2021.3092998
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Moresi, Marco; Gómez, Marcos Javier; Benotti, Luciana; Predicting Students' Difficulties from a Piece of Code; Institute of Electrical and Electronics Engineers; IEEE Transactions on Learning Technologies; 14; 3; 6-2021; 386-399
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES