Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Solving nonstationary classification problems with coupled support vector machines

Grinblat, Guillermo LuisIcon ; Uzal, Lucas CésarIcon ; Ceccatto, Hermenegildo A.Icon ; Granitto, Pablo MiguelIcon
Fecha de publicación: 01/2011
Editorial: Institute Of Electrical And Electronics Engineers
Revista: Ieee Transactions On Neural Networks
ISSN: 1045-9227
e-ISSN: 1941-0093
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Many learning problems may vary slowly over time: in particular, some critical real-world applications. When facing this problem, it is desirable that the learning method could find the correct input-output function and also detect the change in the concept and adapt to it. We introduce the time-adaptive support vector machine (TA-SVM), which is a new method for generating adaptive classifiers, capable of learning concepts that change with time. The basic idea of TA-SVM is to use a sequence of classifiers, each one appropriate for a small time window but, in contrast to other proposals, learning all the hyperplanes in a global way. We show that the addition of a new term in the cost function of the set of SVMs (that penalizes the diversity between consecutive classifiers) produces a coupling of the sequence that allows TA-SVM to learn as a single adaptive classifier. We evaluate different aspects of the method using appropriate drifting problems. In particular, we analyze the regularizing effect of changing the number of classifiers in the sequence or adapting the strength of the coupling. A comparison with other methods in several problems, including the well-known STAGGER dataset and the real-world electricity pricing domain, shows the good performance of TA-SVM in all tested situations.
Palabras clave: Adaptive Methods , Drifting Concepts , Support Vector Machine
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 753.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/15248
DOI: http://dx.doi.org/10.1109/TNN.2010.2083684
URL: http://ieeexplore.ieee.org/document/5624639/?tp=&arnumber=5624639
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Grinblat, Guillermo Luis; Uzal, Lucas César; Ceccatto, Hermenegildo A.; Granitto, Pablo Miguel; Solving nonstationary classification problems with coupled support vector machines; Institute Of Electrical And Electronics Engineers; Ieee Transactions On Neural Networks; 22; 1; 1-2011; 37-51
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES