Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Fast, accurate, robust and Open Source Brain Extraction Tool (OSBET)

Namias, RafaelIcon ; Donnelly Kehoe, Patricio AndresIcon ; D'amato, Juan PabloIcon ; Nagel, J.
Fecha de publicación: 2015
Editorial: Spie
Revista: Spie
ISSN: 0277-786X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática; Ingeniería Médica

Resumen

The removal of non-brain regions in neuroimaging is a critical task to perform a favorable preprocessing. The skull-stripping depends on different factors including the noise level in the image, the anatomy of the subject being scanned and the acquisition sequence. For these and other reasons, an ideal brain extraction method should be fast, accurate, user friendly, open-source and knowledge based (to allow for the interaction with the algorithm in case the expected outcome is not being obtained), producing stable results and making it possible to automate the process for large datasets. There are already a large number of validated tools to perform this task but none of them meets the desired characteristics. In this paper we introduced an open source brain extraction tool (OSBET), composed of four steps using simple well-known operations such as: optimal thresholding, binary morphology, labeling and geometrical analysis, that aims to assemble all the desired features. We present an experiment comparing OSBET with other six state-of-the-art techniques against a publicly available dataset consisting of 40 T1-weighted 3D scans and their corresponding manually segmented images. OSBET gave both: a short duration with an excellent accuracy, getting the best Dice Coefficient metric. Further validation should be performed, for instance, in unhealthy population, to generalize its usage for clinical purposes.
Palabras clave: Skullstripping , Magnetic Resonance Imaging , Neuroscience
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.170Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/15241
DOI: http://dx.doi.org/10.1117/12.2207834
URL: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2479338
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Namias, Rafael; Donnelly Kehoe, Patricio Andres; D'amato, Juan Pablo; Nagel, J.; Fast, accurate, robust and Open Source Brain Extraction Tool (OSBET); Spie; Spie; 9681; -1-2015; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES