Mostrar el registro sencillo del ítem
dc.contributor.author
Baya, Ariel Emilio

dc.contributor.author
Larese, Monica Graciela

dc.date.available
2022-02-18T16:45:18Z
dc.date.issued
2020-11
dc.identifier.citation
Baya, Ariel Emilio; Larese, Monica Graciela; Pixel sampling by clustering; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 159; 113576; 11-2020; 1-37
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/152317
dc.description.abstract
In this paper, we describe Pixel Sampling Clustering Technique (PSCT), a data-driven sampling procedure used to reduce pixel sets. We view the pixels in an image as a high redundancy 3D space. We also refer to this space as our color model. Our method aims to retain a relevant sample of the data so it can act as a new smaller, hence more efficient, color model. PSCT uses a pair of fast density-based clustering algorithms in tandem. First, it applies Birch and then DBSCAN to keep the most densely represented colors. We cluster the resulting color model and use the labels to segment images. We also complement the sampling method with a refinement algorithm intended to improve color representation. In our paper, we show how to reconstruct images using our reduced color model. We also show that reconstructed images have enough information to perform image related learning tasks with almost the same accuracy than the original images but with only a small fraction of the data. We test our sampling method in three image related supervised and unsupervised tasks and compare them with state-of-the-art methods. For our experiments, we use two image datasets: MIT’s Vision Texture Dataset and Berkeley’s BSD500.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLUSTERING
dc.subject
DATA SAMPLING
dc.subject
IMAGE SEGMENTATION
dc.subject
TEXTURE CLASSIFICATION
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Pixel sampling by clustering
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-08-19T19:59:12Z
dc.journal.volume
159
dc.journal.number
113576
dc.journal.pagination
1-37
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.journal.title
Expert Systems with Applications

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2020.113576
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0957417420304000
Archivos asociados