Mostrar el registro sencillo del ítem

dc.contributor.author
Baya, Ariel Emilio  
dc.contributor.author
Larese, Monica Graciela  
dc.date.available
2022-02-18T16:45:18Z  
dc.date.issued
2020-11  
dc.identifier.citation
Baya, Ariel Emilio; Larese, Monica Graciela; Pixel sampling by clustering; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 159; 113576; 11-2020; 1-37  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/152317  
dc.description.abstract
In this paper, we describe Pixel Sampling Clustering Technique (PSCT), a data-driven sampling procedure used to reduce pixel sets. We view the pixels in an image as a high redundancy 3D space. We also refer to this space as our color model. Our method aims to retain a relevant sample of the data so it can act as a new smaller, hence more efficient, color model. PSCT uses a pair of fast density-based clustering algorithms in tandem. First, it applies Birch and then DBSCAN to keep the most densely represented colors. We cluster the resulting color model and use the labels to segment images. We also complement the sampling method with a refinement algorithm intended to improve color representation. In our paper, we show how to reconstruct images using our reduced color model. We also show that reconstructed images have enough information to perform image related learning tasks with almost the same accuracy than the original images but with only a small fraction of the data. We test our sampling method in three image related supervised and unsupervised tasks and compare them with state-of-the-art methods. For our experiments, we use two image datasets: MIT’s Vision Texture Dataset and Berkeley’s BSD500.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CLUSTERING  
dc.subject
DATA SAMPLING  
dc.subject
IMAGE SEGMENTATION  
dc.subject
TEXTURE CLASSIFICATION  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Pixel sampling by clustering  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-19T19:59:12Z  
dc.journal.volume
159  
dc.journal.number
113576  
dc.journal.pagination
1-37  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2020.113576  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0957417420304000