Mostrar el registro sencillo del ítem

dc.contributor.author
Zumoffen, David Alejandro Ramon  
dc.contributor.author
Basualdo, Marta  
dc.date.available
2017-04-11T22:00:29Z  
dc.date.issued
2010  
dc.identifier.citation
Zumoffen, David Alejandro Ramon; Basualdo, Marta; A systematic approach for the design of optimal monitoring systems for large scale processes; American Chemical Society; Industrial & Engineering Chemical Research; 49; 4; -1-2010; 1749-1761  
dc.identifier.issn
0888-5885  
dc.identifier.uri
http://hdl.handle.net/11336/15200  
dc.description.abstract
In this work a new concept for designing an efficient monitoring system for large scale chemical plants is presented. It is considered that the monitoring problem must be solved integrated with the optimal sensor location together with the plant-wide control structure design. The solution of these problems involves deciding among a great number of possible combinations between the input-output variables. It is done supported by the application of genetic algorithm (GA). The key new idea is to propose an adequate objective function, within the GA, that takes into account a fault detectability index based on combined statistics. Additionally, by using a specific penalty function, it is possible to drive the search to the less expensive structure, that is by using the lowest number of sensors. The well-known benchmark case of the Tennessee Eastman plant (TE) is chosen for testing this methodology and for discussion purposes. Since several authors have studied the TE case, the results obtained here can be rigorously compared with those already published. All of the previous works considered that every TE output variables were available for the abnormal events detection for designing the monitoring system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Optimal Monitoring System Design  
dc.subject
Optimal Sensor Location  
dc.subject
Detectability Index  
dc.subject
Genetic Algorithm  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A systematic approach for the design of optimal monitoring systems for large scale processes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-11T17:42:38Z  
dc.identifier.eissn
1520-5045  
dc.journal.volume
49  
dc.journal.number
4  
dc.journal.pagination
1749-1761  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Basualdo, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina  
dc.journal.title
Industrial & Engineering Chemical Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/ie9017836  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie9017836