Mostrar el registro sencillo del ítem
dc.contributor.author
Zumoffen, David Alejandro Ramon
dc.contributor.author
Basualdo, Marta
dc.date.available
2017-04-11T22:00:29Z
dc.date.issued
2010
dc.identifier.citation
Zumoffen, David Alejandro Ramon; Basualdo, Marta; A systematic approach for the design of optimal monitoring systems for large scale processes; American Chemical Society; Industrial & Engineering Chemical Research; 49; 4; -1-2010; 1749-1761
dc.identifier.issn
0888-5885
dc.identifier.uri
http://hdl.handle.net/11336/15200
dc.description.abstract
In this work a new concept for designing an efficient monitoring system for large scale chemical plants is presented. It is considered that the monitoring problem must be solved integrated with the optimal sensor location together with the plant-wide control structure design. The solution of these problems involves deciding among a great number of possible combinations between the input-output variables. It is done supported by the application of genetic algorithm (GA). The key new idea is to propose an adequate objective function, within the GA, that takes into account a fault detectability index based on combined statistics. Additionally, by using a specific penalty function, it is possible to drive the search to the less expensive structure, that is by using the lowest number of sensors. The well-known benchmark case of the Tennessee Eastman plant (TE) is chosen for testing this methodology and for discussion purposes. Since several authors have studied the TE case, the results obtained here can be rigorously compared with those already published. All of the previous works considered that every TE output variables were available for the abnormal events detection for designing the monitoring system.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Optimal Monitoring System Design
dc.subject
Optimal Sensor Location
dc.subject
Detectability Index
dc.subject
Genetic Algorithm
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A systematic approach for the design of optimal monitoring systems for large scale processes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-04-11T17:42:38Z
dc.identifier.eissn
1520-5045
dc.journal.volume
49
dc.journal.number
4
dc.journal.pagination
1749-1761
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington DC
dc.description.fil
Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina
dc.description.fil
Fil: Basualdo, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina
dc.journal.title
Industrial & Engineering Chemical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/ie9017836
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie9017836
Archivos asociados