Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Clustering gene expression data with a penalized graph-based metric

Baya, Ariel EmilioIcon ; Granitto, Pablo MiguelIcon
Fecha de publicación: 01/2011
Editorial: Biomed Central
Revista: Bmc Bioinformatics
ISSN: 1471-2105
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Background: The search for cluster structure in microarray datasets is a base problem for the so-called “-omic sciences”. A difficult problem in clustering is how to handle data with a manifold structure, i.e. data that is not shaped in the form of compact clouds of points, forming arbitrary shapes or paths embedded in a highdimensional space, as could be the case of some gene expression datasets. Results: In this work we introduce the Penalized k-Nearest-Neighbor-Graph (PKNNG) based metric, a new tool for evaluating distances in such cases. The new metric can be used in combination with most clustering algorithms. The PKNNG metric is based on a two-step procedure: first it constructs the k-Nearest-Neighbor-Graph of the dataset of interest using a low k-value and then it adds edges with a highly penalized weight for connecting the subgraphs produced by the first step. We discuss several possible schemes for connecting the different sub-graphs as well as penalization functions. We show clustering results on several public gene expression datasets and simulated artificial problems to evaluate the behavior of the new metric. Conclusions: In all cases the PKNNG metric shows promising clustering results. The use of the PKNNG metric can improve the performance of commonly used pairwise-distance based clustering methods, to the level of more advanced algorithms. A great advantage of the new procedure is that researchers do not need to learn a new method, they can simply compute distances with the PKNNG metric and then, for example, use hierarchical clustering to produce an accurate and highly interpretable dendrogram of their high-dimensional data.
Palabras clave: Clustering , Isomap , Gene Expression
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 831.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/15184
DOI: http://dx.doi.org/10.1186/1471-2105-12-2
URL: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-2
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023695/
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Baya, Ariel Emilio; Granitto, Pablo Miguel; Clustering gene expression data with a penalized graph-based metric; Biomed Central; Bmc Bioinformatics; 12; 2; 1-2011; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES