Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Feasibility of P2P-STB based crowdsourcing to speed-up photo classification for natural disasters

Loor, FernandoIcon ; Manuel Manriquez; Gil Costa, Graciela VerónicaIcon ; Marín, Mauricio
Fecha de publicación: 02/2022
Editorial: Springer
Revista: Cluster Computing-the Journal Of Networks Software Tools And Applications
ISSN: 1386-7857
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

We present a distributed platform aimed to process photos taken after a natural disaster strikes by people witnesses of the situation. These photos have to be processed as quickly as possible to collect statistical data used by the decision makers to coordinate rescue teams. A photo can be classified using a predefined taxonomy such as infrastructure and service, affected people, emotional support, among others. Some photos can be classified automatically while other photos require human intervention. The proposed platform is organized in three layers: an architecture, a communication pattern algorithm and optimization modules. The architecture is based on a community of digital volunteers forming a peer-to-peer network. The digital volunteers receive photos from a centralized server that collects and integrates the results into the management process to improve the general understanding of the situation or rescue actions. We present three communication pattern algorithms that define the flow of tasks between the volunteers and the server. The first algorithm is based on point-to-point communication and the other two algorithms use cache techniques inside the peer-to-peer network. Our proposal is devised for short term campaigns and we aim to speed-up the image processing process, to reduce the workload of the server and to reduce communication latency between the server and the volunteers. We evaluate our proposed platform under highly demanding task traffic rates. We analyze the impact of the input parameters of each communication pattern algorithm. We evaluate the performance of our proposed platform with different approaches presented in the technical literature which are deployed as optimization modules. Results show that the performance of the platform when using the cache-based communication pattern algorithms can outperform the one-to-one communication algorithm under high task traffic rates.
Palabras clave: NATURAL DISASTER , P2P NETWORK , P2P-STB-BASED PLATFORM , PERFORMANCE EVALUATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.590Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/151733
DOI: https://doi.org/10.1007/s10586-021-03381-6
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Loor, Fernando; Manuel Manriquez; Gil Costa, Graciela Verónica; Marín, Mauricio; Feasibility of P2P-STB based crowdsourcing to speed-up photo classification for natural disasters; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 25; 1; 2-2022; 279-302
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES