Mostrar el registro sencillo del ítem
dc.contributor.author
Ríos Reina, Rocío
dc.contributor.author
Azcarate, Silvana Mariela
dc.contributor.author
Camiña, José Manuel
dc.contributor.author
Goicoechea, Hector Casimiro
dc.date.available
2022-02-09T20:00:02Z
dc.date.issued
2020-08
dc.identifier.citation
Ríos Reina, Rocío; Azcarate, Silvana Mariela; Camiña, José Manuel; Goicoechea, Hector Casimiro; Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines; Elsevier Science; Analytica Chimica Acta; 1126; 8-2020; 52-62
dc.identifier.issn
0003-2670
dc.identifier.uri
http://hdl.handle.net/11336/151711
dc.description.abstract
Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
CLASSIFICATION
dc.subject
ELECTROPHORESIS CAPILLARY
dc.subject
MULTI-LEVEL DATA FUSION
dc.subject
MULTIDIMENSIONAL FLUORESCENCE SPECTROSCOPY
dc.subject
THREE-WAY DATA MODELING
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-08-20T19:38:31Z
dc.journal.volume
1126
dc.journal.pagination
52-62
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Ríos Reina, Rocío. Universidad de Sevilla; España
dc.description.fil
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
dc.description.fil
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina
dc.journal.title
Analytica Chimica Acta
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267020306620
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.aca.2020.06.014
Archivos asociados