Mostrar el registro sencillo del ítem

dc.contributor.author
Baravalle, Rodrigo Guillermo  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.contributor.author
Gómez, Juan Carlos  
dc.date.available
2017-04-11T19:57:05Z  
dc.date.issued
2012-11  
dc.identifier.citation
Baravalle, Rodrigo Guillermo; Delrieux, Claudio Augusto; Gómez, Juan Carlos; Bread crumb classification using fractal and multifractal features; Mecanica Computacional; XXXI; 17; 11-2012; 3013-3025  
dc.identifier.issn
1666-6070  
dc.identifier.uri
http://hdl.handle.net/11336/15167  
dc.description.abstract
Adequate image descriptors are fundamental in image classification and object recognition. Main requirements for image features are robustness and low dimensionality which would lead to low classification errors in a variety of situations and with a reasonable computational cost. In this context, the identification of materials poses a significant challenge, since typical (geometric and/or differential) feature extraction methods are not robust enough. Texture features based on Fourier or wavelet transforms, on the other hand, do withstand geometric and illumination variations, but tend to require a high amount of descriptors to perform adequately. Recently, the theory of fractal sets has shown to provide local image features that are both robust and low-dimensional. In this work we apply fractal and multifractal feature extraction techniques for bread crumb classification based on colour scans of slices of different bread types. Preliminary results show that fractal based classification is able to distinguish different bread crumbs with very high accuracy.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Fractal  
dc.subject
Multifractal  
dc.subject
Classification  
dc.subject
Bread Crumb  
dc.subject
Support Vector Machines  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Bread crumb classification using fractal and multifractal features  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-11T17:41:48Z  
dc.journal.volume
XXXI  
dc.journal.number
17  
dc.journal.pagination
3013-3025  
dc.journal.pais
Argentina  
dc.journal.ciudad
Santa Fe  
dc.description.fil
Fil: Baravalle, Rodrigo Guillermo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina  
dc.description.fil
Fil: Gómez, Juan Carlos. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina  
dc.journal.title
Mecanica Computacional  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/4237