Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multifractal characterisation and classification of bread crumb digital images

Baravalle, Rodrigo GuillermoIcon ; Delrieux, Claudio AugustoIcon ; Gómez, Juan Carlos
Fecha de publicación: 12/2015
Editorial: Springer
Revista: EURASIP Journal on Image and Video Processing
e-ISSN: 1687-5281
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Adequate models of the bread crumb structure can be critical for understanding flow and transport processes in bread manufacturing, creating synthetic bread crumb images for photo-realistic rendering, evaluating similarities, and establishing quality features of different bread crumb types. In this article, multifractal analysis, employing the multifractal spectrum (MFS), has been applied to study the structure of the bread crumb in four varieties of bread (baguette, sliced, bran, and sandwich). The computed spectrum can be used to discriminate among bread crumbs from different types. Also, high correlations were found between some of these parameters and the porosity, coarseness, and heterogeneity of the samples. These results demonstrate that the MFS is an appropriate tool for characterising the internal structure of the bread crumb, and thus, it may be used to establish important quality properties it should have. The MFS has shown to provide local and global image features that are both robust and low-dimensional, leading to feature vectors that capture essential information for classification tasks. Results show that the MFS-based classification is able to distinguish different bread crumbs with very high accuracy. Multifractal modelling of the underlying structure can be an appropriate method for parameterising and simulating the appearance of different bread crumbs.
Palabras clave: Fractal , Multifractal , Image Analysis , Image Classification , Feature Extraction
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.882Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/15160
URL: http://jivp.eurasipjournals.com/content/2015/1/9
DOI: http://dx.doi.org/10.1186/s13640-015-0063-8
URL: https://link.springer.com/article/10.1186/s13640-015-0063-8
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Baravalle, Rodrigo Guillermo; Delrieux, Claudio Augusto; Gómez, Juan Carlos; Multifractal characterisation and classification of bread crumb digital images; Springer; EURASIP Journal on Image and Video Processing; 2015; 9; 12-2015; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES