Mostrar el registro sencillo del ítem

dc.contributor.author
Betancur, Stefanía  
dc.contributor.author
Olmos Carreno, Carol Maritza  
dc.contributor.author
Perez, Maximiliano Sebastian  
dc.contributor.author
Lerner, Betiana  
dc.contributor.author
Franco, Camilo A.  
dc.contributor.author
Riazi, Masoud  
dc.contributor.author
Gallego, Jaime  
dc.contributor.author
Carrasco Marín, Francisco  
dc.contributor.author
Cortés, Farid B.  
dc.date.available
2022-02-08T02:41:29Z  
dc.date.issued
2019-10  
dc.identifier.citation
Betancur, Stefanía; Olmos Carreno, Carol Maritza; Perez, Maximiliano Sebastian; Lerner, Betiana; Franco, Camilo A.; et al.; A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery; Elsevier Science; Journal of Petroleum Science and Engineering; 184; 106589; 10-2019; 1-45  
dc.identifier.issn
0920-4105  
dc.identifier.uri
http://hdl.handle.net/11336/151524  
dc.description.abstract
The main objective of this work is to evaluate the effect of the simultaneous use of a surfactant mixture and magnetic iron core-carbon shell nanoparticles on oil recovery via a microfluidic study based on the rock-on-a-chip technology. The surfactant solution used for all experiments was prepared based on a field formulation and consisted of a mixture of a hydrophilic and a lipophilic surfactant. Magnetic iron core-carbon shell nanoparticles with a mean particle size of 60 nm and a surface area of 123 m2 g−1 were employed. The displacement experiments consisted of waterflooding, surfactant flooding and nanoparticle-surfactant flooding and were performed using PDMS (polydimethylsiloxane)-glass microdevices type random network. The characteristics and design of the microfluidic device allowed to emulate a mixed wettability of a porous medium. Then, the oil was displaced by injecting the solution at a constant injection rate, until steady-state conditions were obtained. Furthermore, the effect of three injection rates corresponding to 0.1 ft day−1, 1 ft day−1, and 10 ft day−1 was investigated. The increase in the injection rate favored the oil recovery percentage. In addition, for all injection rates, the oil recovery decreased in the following order: nanoparticle-surfactant flooding > surfactant flooding > waterflooding. The nanoparticle-surfactant system at the injection rate of 1.9 μL min−1 presented the highest oil recovery (i.e., 84%). Likewise, nanoparticle-surfactant flooding showed a more stable displacement front and consequently, the highest capillary number among the injection fluids. Oil recovery by waterflooding was the lowest among the evaluated systems due to the viscous fingering phenomena under different injection rates. In addition, it can be observed that for all injection rates, the presence of the surfactant mixture and nanoparticles reduce the viscous fingering effect. The results can be used to visually and quantitatively analyze the role of the simultaneous use of nanoparticles with surfactants in enhanced oil recovery processes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MICROFLUIDIC  
dc.subject
ENHANCED OIL RECOVERY  
dc.subject
NANOPARTICLES  
dc.subject
SURFACTANT  
dc.subject.classification
Otras Nanotecnología  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-01-25T15:07:30Z  
dc.journal.volume
184  
dc.journal.number
106589  
dc.journal.pagination
1-45  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Betancur, Stefanía. Universidad Nacional de Colombia. Sede Medellín; Colombia. Universidad de Granada; España  
dc.description.fil
Fil: Olmos Carreno, Carol Maritza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Colombia. Sede Medellín; Colombia. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina  
dc.description.fil
Fil: Perez, Maximiliano Sebastian. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Lerner, Betiana. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Franco, Camilo A.. Universidad Nacional de Colombia. Sede Medellin; Colombia  
dc.description.fil
Fil: Riazi, Masoud. Shiraz University; Irán  
dc.description.fil
Fil: Gallego, Jaime. Universidad Nacional de Colombia. Sede Medellin; Colombia. Universidad de Antioquia; Colombia  
dc.description.fil
Fil: Carrasco Marín, Francisco. Universidad de Granada; España  
dc.description.fil
Fil: Cortés, Farid B.. Universidad Nacional de Colombia. Sede Medellin; Colombia  
dc.journal.title
Journal of Petroleum Science and Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.petrol.2019.106589  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0920410519310101