Mostrar el registro sencillo del ítem

dc.contributor.author
Craciun, Gheorghe  
dc.contributor.author
Dickenstein, Alicia Marcela  
dc.contributor.author
Shiu, Anne  
dc.contributor.author
Sturmfels, Bernd  
dc.date.available
2022-02-04T01:51:49Z  
dc.date.issued
2009-05  
dc.identifier.citation
Craciun, Gheorghe; Dickenstein, Alicia Marcela; Shiu, Anne; Sturmfels, Bernd; Toric dynamical systems; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 44; 11; 5-2009; 1551-1565  
dc.identifier.issn
0747-7171  
dc.identifier.uri
http://hdl.handle.net/11336/151319  
dc.description.abstract
Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Ltd - Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHEMICAL REACTION NETWORK  
dc.subject
TORIC IDEAL  
dc.subject
COMPLEX BALANCING  
dc.subject
DETAILED BALANCING  
dc.subject
DEFICIENCY ZERO  
dc.subject
TRAJECTORY  
dc.subject
BIRCH’S THEOREM  
dc.subject
MATRIX-TREE THEOREM  
dc.subject
MODULI SPACE  
dc.subject
POLYHEDRON  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Toric dynamical systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-03T20:51:26Z  
dc.journal.volume
44  
dc.journal.number
11  
dc.journal.pagination
1551-1565  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Craciun, Gheorghe. University of Wisconsin; Estados Unidos  
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Shiu, Anne. University of California at Berkeley; Estados Unidos  
dc.description.fil
Fil: Sturmfels, Bernd. University of California at Berkeley; Estados Unidos  
dc.journal.title
Journal Of Symbolic Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jsc.2008.08.006  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717109000923?via%3Dihub  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0708.3431