Artículo
Internal proof calculi for modal logics with separating conjunction
Fecha de publicación:
04/2021
Editorial:
Oxford University Press
Revista:
Journal of Logic and Computation
ISSN:
0955-792X
e-ISSN:
1465-363X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Modal separation logics are formalisms that combine modal operators to reason locally, with separating connectives that allow to perform global updates on the models. In this work, we design Hilbert-style proof systems for the modal separation logics MSL(∗, 〈 ≠ 〉) and MSL(∗, Diamond) , where ∗ is the separating conjunction, Diamond is the standard modal operator and 〈 ≠ 〉 is the difference modality. The calculi only use the logical languages at hand (no external features such as labels) and can be divided in two main parts. First, normal forms for formulae are designed and the calculi allow to transform every formula into a formula in normal form. Second, another part of the calculi is dedicated to the axiomatization for formulae in normal form, which may still require non-trivial developments but is more manageable.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Demri, Stéphane; Fervari, Raul Alberto; Mansutti, Alessio; Internal proof calculi for modal logics with separating conjunction; Oxford University Press; Journal of Logic and Computation; 31; 3; 4-2021; 832-891
Compartir
Altmétricas