Mostrar el registro sencillo del ítem

dc.contributor.author
Gardiner, Laura Jayne  
dc.contributor.author
Rusholme Pilcher, Rachel  
dc.contributor.author
Colmer, Josh  
dc.contributor.author
Rees, Hannah  
dc.contributor.author
Crescente, Juan Manuel  
dc.contributor.author
Carrieri, Anna Paola  
dc.contributor.author
Duncan, Susan  
dc.contributor.author
Pyzer-Knapp, Edward O.  
dc.contributor.author
Krishna, Ritesh  
dc.contributor.author
Hall, Anthony  
dc.date.available
2022-02-02T20:54:32Z  
dc.date.issued
2021-08  
dc.identifier.citation
Gardiner, Laura Jayne; Rusholme Pilcher, Rachel; Colmer, Josh; Rees, Hannah; Crescente, Juan Manuel; et al.; Interpreting machine learning models to investigate circadian regulation and facilitate exploration of clock function; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 118; 32; 8-2021; 1-12  
dc.identifier.issn
0027-8424  
dc.identifier.uri
http://hdl.handle.net/11336/151197  
dc.description.abstract
The circadian clock is an important adaptation to life on Earth. Here, we use machine learning to predict complex, temporal, and circadian gene expression patterns in Arabidopsis. Most significantly, we classify circadian genes using DNA sequence features generated de novo from public, genomic resources, facilitating downstream application of our methodswith no experimental work or prior knowledge needed. We use local model explanation that is transcript specific to rank DNA sequence features, providing a detailed profile of the potential circadian regulatory mechanisms for each transcript. Furthermore, we can discriminate the temporal phase of transcript expression using the local, explanation-derived, and ranked DNA sequence features, revealing hidden subclasses within the circadian class. Model interpretation/explanation provides the backbone of our methodological advances, giving insight into biological processes and experimental design. Next, we use model interpretation to optimize sampling strategies when we predict circadian transcripts using reduced numbers of transcriptomic timepoints. Finally, we predict the circadian time from a single, transcriptomic timepoint, deriving marker transcripts that are most impactful for accurate prediction; this could facilitate the identification of altered clock function from existing datasets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
National Academy of Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CIRCADIAN  
dc.subject
EXPLAINABLE AI  
dc.subject
FUNCTION  
dc.subject
REGULATION  
dc.subject
TRANSCRIPTOME  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Interpreting machine learning models to investigate circadian regulation and facilitate exploration of clock function  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-01-25T14:37:04Z  
dc.identifier.eissn
1091-6490  
dc.journal.volume
118  
dc.journal.number
32  
dc.journal.pagination
1-12  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington D. C.  
dc.description.fil
Fil: Gardiner, Laura Jayne. Ibm Research; Estados Unidos  
dc.description.fil
Fil: Rusholme Pilcher, Rachel. Earlham Institute; Reino Unido  
dc.description.fil
Fil: Colmer, Josh. Earlham Institute; Reino Unido  
dc.description.fil
Fil: Rees, Hannah. Earlham Institute; Reino Unido  
dc.description.fil
Fil: Crescente, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Marcos Juárez; Argentina  
dc.description.fil
Fil: Carrieri, Anna Paola. Ibm Research; Estados Unidos  
dc.description.fil
Fil: Duncan, Susan. Earlham Institute; Reino Unido  
dc.description.fil
Fil: Pyzer-Knapp, Edward O.. Ibm Research; Estados Unidos  
dc.description.fil
Fil: Krishna, Ritesh. Ibm Research; Estados Unidos  
dc.description.fil
Fil: Hall, Anthony. Earlham Institute; Reino Unido. University of East Anglia; Reino Unido  
dc.journal.title
Proceedings of the National Academy of Sciences of The United States of America  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.pnas.org/lookup/doi/10.1073/pnas.2103070118  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1073/pnas.2103070118