Artículo
Analysis of finite element approximations of stokes equations with nonsmooth data
Fecha de publicación:
12/11/2020
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal on Numerical Analysis
ISSN:
0036-1429
e-ISSN:
1095-7170
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we analyze the finite element approximation of the Stokes equations with nonsmooth Dirichlet boundary data. To define the discrete solution, we first approximate the boundary datum by a smooth one and then apply a standard finite element method to the regularized problem. We prove almost optimal order error estimates for two regularization procedures in the case of general data in fractional order Sobolev spaces and for the Lagrange interpolation (with appropriate modifications at the discontinuities) for piecewise smooth data. Our results apply in particular to the classic lid-driven cavity problem, improving the error estimates obtained in Cai and Wang [Math. Comp., 78 (2009), pp. 771-787]. Finally, we introduce and analyze an a posteriori error estimator. We prove its reliability and efficiency and show some numerical examples which suggest that optimal order of convergence is obtained by an adaptive procedure based on our estimator.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Duran, Ricardo Guillermo; Gastaldi, Lucia; Lombardi, Ariel Luis; Analysis of finite element approximations of stokes equations with nonsmooth data; Society for Industrial and Applied Mathematics; Siam Journal on Numerical Analysis; 58; 6; 12-11-2020; 3309-3331
Compartir
Altmétricas