Mostrar el registro sencillo del ítem
dc.contributor.author
Sofonea, Mircea
dc.contributor.author
Tarzia, Domingo Alberto
dc.date.available
2022-02-01T14:37:41Z
dc.date.issued
2020-08
dc.identifier.citation
Sofonea, Mircea; Tarzia, Domingo Alberto; Convergence Results for Optimal Control Problems Governed by Elliptic Quasivariational Inequalities; Taylor & Francis; Numerical Functional Analysis and Optimization; 41; 11; 8-2020; 1326-1351
dc.identifier.issn
0163-0563
dc.identifier.uri
http://hdl.handle.net/11336/151067
dc.description.abstract
We consider an optimal control problem (Formula presented.) governed by an elliptic quasivariational inequality with unilateral constraints. We associate to (Formula presented.) a new optimal control problem (Formula presented.) obtained by perturbing the state inequality (including the set of constraints and the nonlinear operator) and the cost functional, as well. Then, we provide sufficient conditions which guarantee the convergence of solutions of Problem (Formula presented.) to a solution of Problem (Formula presented.) The proofs are based on convergence results for elliptic quasivariational inequalities, obtained by using arguments of compactness, lower semicontinuity, monotonicity, penalty and various estimates. Finally, we illustrate the use of the abstract convergence results in the study of optimal control associated with two boundary value problems. The first one describes the equilibrium of an elastic body in frictional contact with an obstacle, the so-called foundation. The process is static and the contact is modeled with normal compliance and unilateral constraint, associated to a version of Coulomb’s law of dry friction. The second one describes a stationary heat transfer problem with unilateral constraints. For the two problems we prove existence, uniqueness and convergence results together with the corresponding physical interpretation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONVERGENCE RESULTS
dc.subject
FRICTIONAL CONTACT
dc.subject
HEAT TRANSFER
dc.subject
OPTIMAL CONTROL
dc.subject
OPTIMAL PAIR
dc.subject
QUASIVARIATIONAL INEQUALITY
dc.subject
UNILATERAL CONSTRAINT
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Convergence Results for Optimal Control Problems Governed by Elliptic Quasivariational Inequalities
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-06T21:02:21Z
dc.identifier.eissn
1532-2467
dc.journal.volume
41
dc.journal.number
11
dc.journal.pagination
1326-1351
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Sofonea, Mircea. Université de Perpignan; Francia
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
dc.journal.title
Numerical Functional Analysis and Optimization
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01630563.2020.1772288
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01630563.2020.1772288
Archivos asociados