Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers

Jurado Zavaleta, Marcelo A.; Alcaraz, Mirta RaquelIcon ; Peñaloza, Lidia Guadalupe; Boemo, Analía; Cardozo, Ana; Tarcaya, Gerardo; Azcarate, Silvana MarielaIcon ; Goicoechea, Hector CasimiroIcon
Fecha de publicación: 03/2021
Editorial: Elsevier Science
Revista: Microchemical Journal
ISSN: 0026-265X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

In Argentina, both surface and ground water are used for a diverse priority purposes, such as drinking and basic hygiene, but they are also utilized as receivers of different types of industrial and urban and suburban effluents that affect their natural composition. This activity accompanied by the increase of the population and climate changes have activated the alarms of organism water management forced to implement strict quality controls previous to its use. In this work, a systematic evaluation of a set of physicochemical and biological parameters measured in 19 sampling sites during the period 2017–2019 is presented. Principal component analysis (PCA) and matrix augmentation-PCA (MA-PCA) were applied as exploratory analysis tools to visualize and interpret the information contained in the dataset. Both studies allowed to detect the relevant variables and to differentiate the samples based on pollution areas. These models led to similar conclusions; nonetheless, MA-PCA provided a more straightforward overview of the spatiotemporal variation of the samples in comparison to classical PCA. Finally, a significant and sensitive discriminant model (93% non-error rate) was developed to analyze and predict the self-depuration of the rivers. The excellent predictive ability achieved by this model makes its application suitable for the monitoring of the water quality.
Palabras clave: ARGENTINA RIVERS , CHEMOMETRIC MODELING , SELF-DEPURATION MONITORING , SOURCE POLLUTION , SURFACE WATER QUALITY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.817Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/151046
URL: https://linkinghub.elsevier.com/retrieve/pii/S0026265X20337838
DOI: http://dx.doi.org/10.1016/j.microc.2020.105841
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(INCITAP)
Articulos de INST.D/CS D/L/TIERRA Y AMBIENTALES D/L/PAMPA
Citación
Jurado Zavaleta, Marcelo A.; Alcaraz, Mirta Raquel; Peñaloza, Lidia Guadalupe; Boemo, Analía; Cardozo, Ana; et al.; Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers; Elsevier Science; Microchemical Journal; 162; 3-2021; 1-40
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES