Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data

Garde, Christian; Ramarathinam, Sri H.; Jappe, Emma C.; Nielsen, MortenIcon ; Kringelum, Jens V.; Trolle, Thomas; Purcell, Anthony W.
Fecha de publicación: 05/2019
Editorial: Springer
Revista: Immunogenetics
ISSN: 0093-7711
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Medicina Básica

Resumen

Major histocompatibility complex (MHC) class II antigen presentation is a key component in eliciting a CD4+ T cell response. Precise prediction of peptide-MHC (pMHC) interactions has thus become a cornerstone in defining epitope candidates for rational vaccine design. Current pMHC prediction tools have, so far, primarily focused on inference from in vitro binding affinity. In the current study, we collate a large set of MHC class II eluted ligands generated by mass spectrometry to guide the prediction of MHC class II antigen presentation. We demonstrate that models developed on eluted ligands outperform those developed on pMHC binding affinity data. The predictive performance can be further enhanced by combining the eluted ligand and pMHC affinity data in a single prediction model. Furthermore, by including ligand data, the peptide length preference of MHC class II can be accurately learned by the prediction model. Finally, we demonstrate that our model significantly outperforms the current state-of-the-art prediction method, NetMHCIIpan, on an external dataset of eluted ligands and appears superior in identifying CD4+ T cell epitopes.
Palabras clave: CD4+ EPITOPE , LIGAND PREDICTION , MACHINE LEARNING , MASS SPECTROMETRY , MHC CLASS II , PAN METHOD , PEPTIDOMICS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.281Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/151021
DOI: http://dx.doi.org/10.1007/s00251-019-01122-z
URL: https://link.springer.com/article/10.1007%2Fs00251-019-01122-z
Colecciones
Articulos (IIBIO)
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Citación
Garde, Christian; Ramarathinam, Sri H.; Jappe, Emma C.; Nielsen, Morten; Kringelum, Jens V.; et al.; Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data; Springer; Immunogenetics; 71; 7; 5-2019; 445-454
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES