Artículo
A review of multivariate calibration methods applied to biomedical analysis
Escandar, Graciela Monica
; Damiani, Patricia Cecilia; Goicoechea, Hector Casimiro
; Olivieri, Alejandro Cesar
Fecha de publicación:
01/2006
Editorial:
Elsevier Science
Revista:
Microchemical Journal
ISSN:
0026-265X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The determination of the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples is usually performed by using high-performance liquid chromatography (HPLC). Modern multivariate calibration methods constitute an attractive alternative, even when they are applied to intrinsically unselective spectroscopic or electrochemical signals. First-order (i.e., vectorized) data are conveniently analyzed with classical chemometric tools such as partial least-squares (PLS). Certain analytical problems require more sophisticated models, such as artificial neural networks (ANNs), which are especially able to cope with non-linearities in the data structure. Finally, models based on the acquisition and processing of second- or higher-order data (i.e., matrices or higher dimensional data arrays) present the phenomenon known as "second-order advantage", which permits quantitation of calibrated analytes in the presence of interferents. The latter models show immense potentialities in the field of biomedical analysis. Pertinent literature examples are reviewed.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Articulos de INST.DE QUIMICA ROSARIO
Citación
Escandar, Graciela Monica; Damiani, Patricia Cecilia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A review of multivariate calibration methods applied to biomedical analysis; Elsevier Science; Microchemical Journal; 82; 1; 1-2006; 29-42
Compartir
Altmétricas