Artículo
Absolute Variation of Ritz Values, Principal Angles, and Spectral Spread
Fecha de publicación:
10/2021
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Matrix Analysis And Applications
ISSN:
0895-4798
e-ISSN:
1095-7162
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let A be a d×d complex self-adjoint matrix, X,Y⊂Cd be k-dimensional subspaces and let X be a d×k complex matrix whose columns form an orthonormal basis of X. We construct a d×k complex matrix Yr whose columns form an orthonormal basis of Y and obtain sharp upper bounds for the singular values s(X∗AX−Y∗rAYr) in terms of submajorization relations involving the principal angles between X and Y and the spectral spread of A. We apply these results to obtain sharp upper bounds for the absolute variation of the Ritz values of A associated with the subspaces X and Y, that partially confirm conjectures by Knyazev and Argentati.
Palabras clave:
PRINCIPAL ANGLES
,
RITZ VALUES
,
SPECTRAL SPREAD
,
MAJORIZATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Massey, Pedro Gustavo; Stojanoff, Demetrio; Zarate, Sebastian Gonzalo; Absolute Variation of Ritz Values, Principal Angles, and Spectral Spread; Society for Industrial and Applied Mathematics; Siam Journal On Matrix Analysis And Applications; 42; 4; 10-2021; 1506-1527
Compartir
Altmétricas