Mostrar el registro sencillo del ítem

dc.contributor.author
Bottazzi, Tamara Paula  
dc.date.available
2022-01-28T20:36:16Z  
dc.date.issued
2021-07  
dc.identifier.citation
Bottazzi, Tamara Paula; Best approximation by diagonal operators in Schatten ideals; Elsevier Science Inc.; Linear Algebra and its Applications; 620; 7-2021; 1-26  
dc.identifier.issn
0024-3795  
dc.identifier.uri
http://hdl.handle.net/11336/150928  
dc.description.abstract
If X is the set of compact or p-Schatten operators over a complex Hilbert separable space H, we study the existence and characterization properties of Hermitian A∈X such that |||A|||≤|||A+D|||,for allD∈D(X) or equivalently |||A|||=minD∈D(X)⁡|||A+D|||=dist(A,D(X)), where D(X) is the subspace of diagonal operators of X in any prefixed basis of H and |||⋅||| is the usual operator norm in each X. We use Birkhoff-James orthogonality as a tool to characterize and develop properties of these operators in each context. We also provide several illustrative examples.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMPACT OPERATOR  
dc.subject
DIAGONAL OPERATORS  
dc.subject
MINIMALITY  
dc.subject
ORTHOGONALITY  
dc.subject
SCHATTEN P-NORM  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Best approximation by diagonal operators in Schatten ideals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-01-25T14:40:43Z  
dc.journal.volume
620  
dc.journal.pagination
1-26  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Rio Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; Argentina  
dc.journal.title
Linear Algebra and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379521000847  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.laa.2021.02.025