Mostrar el registro sencillo del ítem

dc.contributor.author
Amster, Pablo Gustavo  
dc.contributor.author
Maurette, Manuel  
dc.date.available
2017-04-10T18:49:38Z  
dc.date.issued
2011-02  
dc.identifier.citation
Amster, Pablo Gustavo; Maurette, Manuel; Periodic solutions of systems with singularities of repulsive type; De Gruyter; Advanced Nonlinear Studies; 11; 1; 2-2011; 201-220  
dc.identifier.issn
1536-1365  
dc.identifier.uri
http://hdl.handle.net/11336/15091  
dc.description.abstract
Motivated by the classical Coulomb central motion model, we study the existence of T-periodic solutions for the nonlinear second order system of singular ordinary differential equations u′′ + g(u) = p(t). Using topological degree methods, we prove that when the nonlinearity g : ℝN\{0} →ℝN is continuous, repulsive at the origin and bounded at infinity, if an appropriate Nirenberg type condition holds then either the problem has a classical solution, or else there exists a family of solutions of perturbed problems that converge uniformly and weakly in H1 to some limit function u. Furthermore, under appropriate conditions we prove that u is a classical solution.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Repulsive Singularities  
dc.subject
Periodic Solutions  
dc.subject
Topological Degree  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Periodic solutions of systems with singularities of repulsive type  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-07T13:41:11Z  
dc.journal.volume
11  
dc.journal.number
1  
dc.journal.pagination
201-220  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Antonio  
dc.description.fil
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Maurette, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; Argentina  
dc.journal.title
Advanced Nonlinear Studies  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2011.11.issue-1/ans-2011-0110/ans-2011-0110.xml?format=INT  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/ans-2011-0110