Mostrar el registro sencillo del ítem

dc.contributor.author
de Mendoza, Diego  
dc.contributor.author
Pilon, Marc  
dc.date.available
2022-01-28T19:45:59Z  
dc.date.issued
2019-10  
dc.identifier.citation
de Mendoza, Diego; Pilon, Marc; Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans; Pergamon-Elsevier Science Ltd; Progress in Lipid Research; 76; 100996; 10-2019; 1-19  
dc.identifier.issn
0163-7827  
dc.identifier.uri
http://hdl.handle.net/11336/150914  
dc.description.abstract
The lipid composition of biological membranes is key for cell viability. Nevertheless, and despite their central role in cell function, our understanding of membrane physiology continues to lag behind most other aspects of cell biology. The maintenance of membrane properties in situations of environmental stress requires homeostatic sense-and-response mechanisms. For example, the balance between esterified saturated (SFAs) and unsaturated fatty acids (UFAs), is a key factor determining lipid packing, water permeability, and membrane fluidity. The reduced thermal motion of lipid acyl chains triggered by an increase in SFAs causes a tighter lipid packing and increase the membrane viscosity. Conversely almost all organisms adapt to membrane rigidifying conditions, such as low temperature in poikilotherms, by incorporating more lipids with poorly packing unsaturated acyl chains. The molecular mechanisms underlying membrane homeostasis are only starting to emerge through combinations of genetics, cell biology, lipidomics, structural approaches and computational modelling. In this review we discuss recent advances in defining molecular machineries responsible for sensing membrane properties and mediating homeostatic responses in bacteria, yeast and animals. Although these organisms use remarkably distinct sensing mechanisms to mediate membrane adaptation, they suggest that the principle of transmembrane signaling to integrate membrane composition with lipid biosynthesis is ancient and essential for life.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Lipids  
dc.subject
Review  
dc.subject
Elegans  
dc.subject
Membranes  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-25T17:57:49Z  
dc.journal.volume
76  
dc.journal.number
100996  
dc.journal.pagination
1-19  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: de Mendoza, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina  
dc.description.fil
Fil: Pilon, Marc. University Goteborg; Suecia  
dc.journal.title
Progress in Lipid Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.plipres.2019.100996  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0163782719300396