Mostrar el registro sencillo del ítem
dc.contributor.author
Bottari, Agustin
dc.contributor.author
Marchetti, Pablo Andres
dc.contributor.author
Marchetti, Alejandro Gabriel
dc.date.available
2022-01-28T15:47:40Z
dc.date.issued
2019-03
dc.identifier.citation
Bottari, Agustin; Marchetti, Pablo Andres; Marchetti, Alejandro Gabriel; Self-Optimizing Steady-State Back-Off Approach for Control Structure Selection; American Chemical Society; Industrial & Engineering Chemical Research; 58; 30; 3-2019; 13699-13717
dc.identifier.issn
0888-5885
dc.identifier.uri
http://hdl.handle.net/11336/150896
dc.description.abstract
The selection of suitable control structures has an important influence on the economic performance of process systems in the presence of disturbances. Economics has been incorporated in the control structure selection problem using different formulations based on different criteria. The back-off approach is based on the idea of minimizing the economic loss that results from the need to back off from the active constraints to avoid violating them in the presence of disturbances. On the other hand, self-optimizing control schemes aim at selecting controlled variables and constant setpoint values, such that the economic loss with respect to optimal operation is minimized in the presence of disturbances. This paper presents a comprehensive study of different formulations of the back-off approach that pays attention to steady-state feasibility in the presence of disturbances. We argue that the back-off approach that selects controlled variables and optimal setpoint values by minimizing the average cost in the presence of disturbances is a global self-optimizing control approach. The performance of the different formulations is compared by means of three different case studies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Self-Optimizing
dc.subject
Steady-State
dc.subject
Control Structure Selection
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Self-Optimizing Steady-State Back-Off Approach for Control Structure Selection
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-17T18:38:49Z
dc.journal.volume
58
dc.journal.number
30
dc.journal.pagination
13699-13717
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Bottari, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.journal.title
Industrial & Engineering Chemical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.iecr.8b06296
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.iecr.8b06296
Archivos asociados