Mostrar el registro sencillo del ítem

dc.contributor.author
Bonnans, J. Frederic  
dc.contributor.author
Sanchez Fernandez de la Vega, Constanza Mariel  
dc.date.available
2017-04-10T18:49:07Z  
dc.date.issued
2010-12  
dc.identifier.citation
Bonnans, J. Frederic; Sanchez Fernandez de la Vega, Constanza Mariel; Optimal Control of State Constrained Integral Equations; Springer; Set-valued And Variational Analysis; 18; 3; 12-2010; 307-326  
dc.identifier.issn
1877-0533  
dc.identifier.uri
http://hdl.handle.net/11336/15086  
dc.description.abstract
We consider the optimal control problem of a class of integral equations with initial and final state constraints, as well as running state constraints. We prove Pontryagin’s principle, and study the continuity of the optimal control and of the measure associated with first order state constraints. We also establish the Lipschitz continuity of these two functions of time for problems with only first order state constraints.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Integral Equations  
dc.subject
Optimal Control  
dc.subject
Pontryagin Principle  
dc.subject
State Constraints  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Optimal Control of State Constrained Integral Equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-06T16:52:18Z  
dc.journal.volume
18  
dc.journal.number
3  
dc.journal.pagination
307-326  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Bonnans, J. Frederic. Institut National de Recherche en Informatique et en Automatique; Francia  
dc.description.fil
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Set-valued And Variational Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11228-010-0154-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11228-010-0154-8