Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

MVC1_GUI: A MATLAB graphical user interface for first-order multivariate calibration. An upgrade including artificial neural networks modelling

Chiappini, Fabricio AlejandroIcon ; Goicoechea, Hector CasimiroIcon ; Olivieri, Alejandro CesarIcon
Fecha de publicación: 11/2020
Editorial: Elsevier Science
Revista: Chemometrics and Intelligent Laboratory Systems
ISSN: 0169-7439
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

In the present report, an upgrade of a MATLAB graphical user interface (GUI) toolbox for implementing first-order multivariate calibration models is presented. The new freely available Multivariate Calibration 1 (MVC1_GUI) incorporates new models and features that make it a very versatile tool for data processing. In addition to the linear models, i.e., principal component regression (PCR) and partial least-squares 1 (PLS-1), included in the earlier software version, PLS-2 and maximum likelihood principal component regression (MLPCR) are now available, together with two non-linear models based on two different types of artificial neural networks (ANN): feed-forward multi-layer network with radial basis functions (RBF) and multi-layer back-propagation perceptron (MLP). The toolbox accepts different input data formats, and incorporates many advanced pre-processing algorithms to improve prediction capabilities. The development and validation of each model and its subsequent application to unknown samples is straightforward, since it generates many different plots regarding model performance, including outlier detection. Prediction results are produced along with analytical figures of merit and standard errors calculated by uncertainty propagation.
Palabras clave: QUIMIOMETRÍA , CALIBRACION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.018Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/150805
URL: https://www.sciencedirect.com/science/article/pii/S0169743920303300
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
Chiappini, Fabricio Alejandro; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; MVC1_GUI: A MATLAB graphical user interface for first-order multivariate calibration. An upgrade including artificial neural networks modelling; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 206; 11-2020; 1-11
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES