Mostrar el registro sencillo del ítem
dc.contributor.author
del Rio, Ezequiel
dc.contributor.author
Elaskar, Sergio Amado
dc.date.available
2022-01-27T06:44:08Z
dc.date.issued
2021-04
dc.identifier.citation
del Rio, Ezequiel; Elaskar, Sergio Amado; Type III intermittency without characteristic relation; American Institute of Physics; Chaos; 31; 043127; 4-2021; 1-10
dc.identifier.issn
1054-1500
dc.identifier.uri
http://hdl.handle.net/11336/150770
dc.description.abstract
Chaotic intermittency is a route to chaos when transitions between laminar and chaotic dynamics occur. The main attribute of intermittency is the reinjection mechanism, described by the reinjection probability density (RPD), which maps trajectories from the chaotic region into the laminar one. The RPD classically was taken as a constant. This hypothesis is behind the classically reported characteristic relations, a tool describing how the mean value of the laminar length goes to infinity as the control parameter goes to zero. Recently, a generalized non-uniform RPD has been observed in a wide class of 1D maps; hence, the intermittency theory has been generalized. Consequently, the characteristic relations were also generalized. However, the RPD and the characteristic relations observed in some experimental Poincaré maps still cannot be well explained in the actual intermittency framework. We extend the previous analytical results to deal with the mentioned class of maps. We found that in the mentioned maps, there is not a well-defined RPD in the sense that its shape drastically changes depending on a small variation of the parameter of the map. Consequently, the characteristic relation classically associated to every type of intermittency is not well defined and, in general, cannot be determined experimentally. We illustrate the results with a 1D map and we develop the analytical expressions for every RPD and its characteristic relations. Moreover, we found a characteristic relation going to a constant value, instead of increasing to infinity. We found a good agreement with the numerical simulation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
intermittency
dc.subject
characteristic relation
dc.subject
maps
dc.subject
chaos
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Type III intermittency without characteristic relation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-11-12T14:25:59Z
dc.journal.volume
31
dc.journal.number
043127
dc.journal.pagination
1-10
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: del Rio, Ezequiel. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
dc.journal.title
Chaos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0040599
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0040599
Archivos asociados