Mostrar el registro sencillo del ítem
dc.contributor.author
Dieulefait, Luis
dc.contributor.author
Guerberoff, Lucio
dc.contributor.author
Pacetti, Ariel Martín
dc.date.available
2017-04-10T18:00:10Z
dc.date.issued
2010-04
dc.identifier.citation
Dieulefait, Luis; Guerberoff, Lucio; Pacetti, Ariel Martín; Proving Modularity for a given elliptic curve over an imaginary quadratic field; American Mathematical Society; Mathematics Of Computation; 79; 270; 4-2010; 1145-1170
dc.identifier.issn
0025-5718
dc.identifier.uri
http://hdl.handle.net/11336/15075
dc.description.abstract
We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor and Berger-Harcos (cf. [HST93], [Tay94] and [BH07]) we can associate to an automorphic representation a family of compatible ℓ-adic representations. Our algorithm is based on Faltings-Serre’s method to prove that ℓ-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Mathematical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Elliptic Curves
dc.subject
Modularity
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Proving Modularity for a given elliptic curve over an imaginary quadratic field
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-04-06T16:52:09Z
dc.journal.volume
79
dc.journal.number
270
dc.journal.pagination
1145-1170
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Providence
dc.description.fil
Fil: Dieulefait, Luis. Universidad de Barcelona; España
dc.description.fil
Fil: Guerberoff, Lucio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universite Paris Diderot - Paris 7; Francia
dc.description.fil
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Mathematics Of Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2010-79-270/S0025-5718-09-02291-1/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/S0025-5718-09-02291-1
Archivos asociados