Artículo
Fibers of multi-graded rational maps and orthogonal projection onto rational surfaces
Fecha de publicación:
06/2020
Editorial:
Society for Industrial and Applied Mathematics
Revista:
SIAM Journal on Applied Algebra and Geometry
ISSN:
2470-6566
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We contribute a new algebraic method for computing the orthogonal projections of a point onto a rational algebraic surface embedded in the three-dimensional projective space. This problem is first turned into the computation of the finite fibers of a generically finite dominant rational map: a congruence of normal lines to the rational surface. Then, an in-depth study of certain syzygy modules associated to such a congruence is presented and applied to build elimination matrices that provide universal representations of its finite fibers, under some genericity assumptions. These matrices depend linearly in the variables of the-three dimensional space. They can be precomputed so that the orthogonal projections of points are approximately computed by means of fast and robust numerical linear algebra calculations.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Botbol, Nicolas Santiago; Busé, Laurent; Chardin, Marc; Yildirim, Fatmanur; Fibers of multi-graded rational maps and orthogonal projection onto rational surfaces; Society for Industrial and Applied Mathematics; SIAM Journal on Applied Algebra and Geometry; 4; 2; 6-2020; 322-353
Compartir
Altmétricas