Artículo
Finite difference schemes for a structured population model in the space of measures
Fecha de publicación:
01/2020
Editorial:
American Institute of Mathematical Sciences
Revista:
Mathematical Biosciences And Engineering
ISSN:
1547-1063
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present two finite-difference methods for approximating solutions to a structured population model in the space of non-negative Radon Measures. The first method is a first-order upwind-based scheme and the second is high-resolution method of second-order. We prove that the two schemes converge to the solution in the Bounded-Lipschitz norm. Several numerical examples demonstrating the order of convergence and behavior of the schemes around singularities are provided. In particular, these numerical results show that for smooth solutions the upwind and high-resolution methods provide a first-order and a second-order approximation, respectively. Furthermore, for singular solutions the second-order high-resolution method is superior to the first-order method.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Ackleh, Azmy S.; Lyons, Rainey; Saintier, Nicolas Bernard Claude; Finite difference schemes for a structured population model in the space of measures; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 17; 1; 1-2020; 747-775
Compartir
Altmétricas