Artículo
A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect
Fecha de publicación:
03/2010
Editorial:
International Press Boston
Revista:
Mathematical Research Letters
ISSN:
1073-2780
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We show that any smooth lattice polytope P with codegree greater or equal than (dim(P) + 3)/2 (or equivalently, with degree smaller than dim(P)/2), defines a dual defective projective toric manifold. This implies that P is Q-normal (in the terminology of [11]) and answers partially an adjunction-theoretic conjecture by BeltramettiSommese (see [5],[4],[11]). Also, it follows from [24] that smooth lattice polytopes with this property are precisely strict Cayley polytopes, which completes the answer in [11] of a question in [1] for smooth polytopes.
Palabras clave:
Toric Manifold
,
Lattice Polytope
,
Dual Defect
,
Hypergeometric Equalities
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Dickenstein, Alicia Marcela; Nill, Benjamin; A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect; International Press Boston; Mathematical Research Letters; 17; 3; 3-2010; 435-448
Compartir