Artículo
Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures
Fecha de publicación:
03/2021
Editorial:
American Institute of Mathematical Sciences
Revista:
Discrete And Continuous Dynamical Systems-series B
ISSN:
1531-3492
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we consider a selection-mutation model with an advection term formulated on the space of finite signed measures on Rd. The selection-mutation kernel is described by a family of measures which allows the study of continuous and discrete kernels under the same setting. We rescale the selection-mutation kernel to obtain a diffusively rescaled selection-mutation model. We prove that if the rescaled selection-mutation kernel converges to a pure selection kernel then the solution of the diffusively rescaled model converges to a solution of an advection-diffusion equation.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Ackleh, Azmy S.; Saintier, Nicolas Bernard Claude; Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems-series B; 26; 3; 3-2021; 1469-1497
Compartir
Altmétricas