Mostrar el registro sencillo del ítem

dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Pires, Ana M.  
dc.contributor.author
Rodrigues, Isabel M.  
dc.date.available
2017-04-07T20:27:29Z  
dc.date.issued
2010-12  
dc.identifier.citation
Boente Boente, Graciela Lina; Pires, Ana M.; Rodrigues, Isabel M.; Detecting influential observations in principal components and common principal components; Elsevier Science; Computational Statistics And Data Analysis; 54; 12; 12-2010; 2967-2975  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/15025  
dc.description.abstract
Detecting outlying observations is an important step in any analysis, even when robust estimates are used. In particular, the robustified Mahalanobis distance is a natural measure of outlyingness if one focuses on ellipsoidal distributions. However, it is well known that the asymptotic chi-square approximation for the cutoff value of the Mahalanobis distance based on several robust estimates (like the minimum volume ellipsoid, the minimum covariance determinant and the S-estimators) is not adequate for detecting atypical observations in small samples from the normal distribution. In the multi-population setting and under a common principal components model, aggregated measures based on standardized empirical influence functions are used to detect observations with a significant impact on the estimators. As in the one-population setting, the cutoff values obtained from the asymptotic distribution of those aggregated measures are not adequate for small samples. More appropriate cutoff values, adapted to the sample sizes, can be computed by using a cross-validation approach. Cutoff values obtained from a Monte Carlo study using S-estimators are provided for illustration. A real data set is also analyzed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Common Principal Components  
dc.subject
Detection of Outliers  
dc.subject
Influence Functions  
dc.subject
Robust Estimation  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Detecting influential observations in principal components and common principal components  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-06T16:51:49Z  
dc.journal.volume
54  
dc.journal.number
12  
dc.journal.pagination
2967-2975  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Pires, Ana M.. Technical University of Lisbon; Portugal  
dc.description.fil
Fil: Rodrigues, Isabel M.. Technical University of Lisbon; Portugal  
dc.journal.title
Computational Statistics And Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947310000022  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2010.01.001