Mostrar el registro sencillo del ítem
dc.contributor.author
Boente Boente, Graciela Lina
dc.contributor.author
Pires, Ana M.
dc.contributor.author
Rodrigues, Isabel M.
dc.date.available
2017-04-07T20:27:29Z
dc.date.issued
2010-12
dc.identifier.citation
Boente Boente, Graciela Lina; Pires, Ana M.; Rodrigues, Isabel M.; Detecting influential observations in principal components and common principal components; Elsevier Science; Computational Statistics And Data Analysis; 54; 12; 12-2010; 2967-2975
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/15025
dc.description.abstract
Detecting outlying observations is an important step in any analysis, even when robust estimates are used. In particular, the robustified Mahalanobis distance is a natural measure of outlyingness if one focuses on ellipsoidal distributions. However, it is well known that the asymptotic chi-square approximation for the cutoff value of the Mahalanobis distance based on several robust estimates (like the minimum volume ellipsoid, the minimum covariance determinant and the S-estimators) is not adequate for detecting atypical observations in small samples from the normal distribution. In the multi-population setting and under a common principal components model, aggregated measures based on standardized empirical influence functions are used to detect observations with a significant impact on the estimators. As in the one-population setting, the cutoff values obtained from the asymptotic distribution of those aggregated measures are not adequate for small samples. More appropriate cutoff values, adapted to the sample sizes, can be computed by using a cross-validation approach. Cutoff values obtained from a Monte Carlo study using S-estimators are provided for illustration. A real data set is also analyzed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Common Principal Components
dc.subject
Detection of Outliers
dc.subject
Influence Functions
dc.subject
Robust Estimation
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Detecting influential observations in principal components and common principal components
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-04-06T16:51:49Z
dc.journal.volume
54
dc.journal.number
12
dc.journal.pagination
2967-2975
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Pires, Ana M.. Technical University of Lisbon; Portugal
dc.description.fil
Fil: Rodrigues, Isabel M.. Technical University of Lisbon; Portugal
dc.journal.title
Computational Statistics And Data Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947310000022
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2010.01.001
Archivos asociados