Mostrar el registro sencillo del ítem

dc.contributor.author
Armentano, Maria Gabriela  
dc.contributor.author
Blasco, Jordi  
dc.date.available
2017-04-07T20:27:24Z  
dc.date.issued
2010-07  
dc.identifier.citation
Armentano, Maria Gabriela; Blasco, Jordi; Stable and unstable cross-grid PkQl mixed finite elements for the Stokes problem; Elsevier; Journal Of Computational And Applied Mathematics; 234; 5; 7-2010; 1404-1416  
dc.identifier.issn
0377-0427  
dc.identifier.uri
http://hdl.handle.net/11336/15024  
dc.description.abstract
In this paper we develop and analyze a family of mixed finite element methods for the numerical solution of the Stokes problem in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. Continuous interpolations of degrees k for the velocity and l for the pressure are considered, so the new finite elements are called cross-grid PkQl. A stability analysis of these approximations is provided, based on the macroelement technique of Stenberg. The lowest order P1Q1 and P2Q1 cases are analyzed in detail; in the first case, a global spurious pressure mode is shown to exist, so this element is unstable. In the second case, however, stability is rigorously proved. Numerical results obtained in these two cases are also presented, which confirm the existence of the spurious pressure mode for the P1Q1 element and the stability of the P2Q1 element.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Stokes Problem  
dc.subject
Mixed Finite Elements  
dc.subject
Stability Analysis  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Stable and unstable cross-grid PkQl mixed finite elements for the Stokes problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-06T16:51:48Z  
dc.journal.volume
234  
dc.journal.number
5  
dc.journal.pagination
1404-1416  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Blasco, Jordi. Universidad Politecnica de Catalunya; España  
dc.journal.title
Journal Of Computational And Applied Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377042710000981  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cam.2010.02.016