Mostrar el registro sencillo del ítem

dc.contributor.author
Molina, Romina Soledad  
dc.contributor.author
Loor, Fernando  
dc.contributor.author
Gil Costa, Graciela Verónica  
dc.contributor.author
Nardini, Franco Maria  
dc.contributor.author
Perego, Raffaele  
dc.contributor.author
Trani, Salvatore  
dc.date.available
2022-01-18T14:59:41Z  
dc.date.issued
2021-09  
dc.identifier.citation
Molina, Romina Soledad; Loor, Fernando; Gil Costa, Graciela Verónica; Nardini, Franco Maria; Perego, Raffaele; et al.; Efficient traversal of decision tree ensembles with FPGAs; Academic Press Inc Elsevier Science; Journal of Parallel and Distributed Computing; 155; 9-2021; 38-49  
dc.identifier.issn
0743-7315  
dc.identifier.uri
http://hdl.handle.net/11336/150230  
dc.description.abstract
System-on-Chip (SoC) based Field Programmable Gate Arrays (FPGAs) provide a hardware acceleration technology that can be rapidly deployed and tuned, thus providing a flexible solution adaptable to specific design requirements and to changing demands. In this paper, we present three SoC architecture designs for speeding-up inference tasks based on machine learned ensembles of decision trees. We focus on QuickScorer, the state-of-the-art algorithm for the efficient traversal of tree ensembles and present the issues and the advantages related to its deployment on two SoC devices with different capacities. The results of the experiments conducted using publicly available datasets show that the solution proposed is very efficient and scalable. More importantly, it provides almost constant inference times, independently of the number of trees in the model and the number of instances to score. This allows the SoC solution deployed to be fine tuned on the basis of the accuracy and latency constraints of the application scenario considered.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DECISION TREES  
dc.subject
FPGA  
dc.subject
MACHINE LEARNING  
dc.subject
SYSTEM ON CHIP  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Efficient traversal of decision tree ensembles with FPGAs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-01-03T13:57:20Z  
dc.identifier.eissn
1096-0848  
dc.journal.volume
155  
dc.journal.pagination
38-49  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Molina, Romina Soledad. Universidad Nacional de San Luis; Argentina. Università degli Studi di Trieste; Italia. The Abdus Salam International Centre for Theoretical Physics; Italia  
dc.description.fil
Fil: Loor, Fernando. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina  
dc.description.fil
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina  
dc.description.fil
Fil: Nardini, Franco Maria. Consiglio Nazionale delle Ricerche; Italia  
dc.description.fil
Fil: Perego, Raffaele. Consiglio Nazionale delle Ricerche; Italia  
dc.description.fil
Fil: Trani, Salvatore. Consiglio Nazionale delle Ricerche; Italia  
dc.journal.title
Journal of Parallel and Distributed Computing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0743731521000915  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jpdc.2021.04.008