Artículo
Minimum sum set coloring of trees and line graphs of trees
Fecha de publicación:
01/2011
Editorial:
Elsevier
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees.
Palabras clave:
Graph Coloring
,
Minimum Sum Coloring
,
Set-Coloring
,
Trees
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Bonomo, Flavia; Duran, Guillermo Alfredo; Marenco, Javier; Valencia Pabon, Mario; Minimum sum set coloring of trees and line graphs of trees; Elsevier; Discrete Applied Mathematics; 159; 5; 1-2011; 288-294
Compartir
Altmétricas